Advertisement

Russian Journal of Physical Chemistry A

, Volume 83, Issue 11, pp 1907–1912 | Cite as

The influence of a solvent on the aggregation of ruthenium(II) tetra-15-crown-5-phthalocyaninate

  • A. D. Grishina
  • V. I. Zolotarevskii
  • Yu. G. Gorbunova
  • L. Ya. Pereshivko
  • Yu. Yu. Enakieva
  • T. V. Krivenko
  • V. V. Savel’ev
  • A. V. VannikovEmail author
  • A. Yu. Tsivadze
Structure of Matter and Quantum Chemistry

Abstract

The images of ensembles of ruthenium(II) complexes with tetra-15-crown-5-phthalocyanine and axially coordinated triethylenediamine molecules, (R4Pc)Ru(TED)2, obtained on an atomic force microscope were analyzed. A comparison with the X-ray structure analysis data was performed to estimate the number and mutual arrangement (architecture) of molecules in supramolecular aggregates depending on the nature of the solvent and the temperature of solutions before casting. Storage at room temperature or heating of a solution of the complex in tetrachloroethane caused the formation of stable supramolecular “wires” 600 nm or more long. The z-scanning method was used to study the third-order nonlinear optical characteristics of solutions of the (R4Pc)Ru(TED)2 complex in tetrachloroethane.

Keywords

Ruthenium Atomic Force Microscopic Image Tetrachloroethane Order Nonlinearity Open Aperture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Vannikov, A. D. Grishina, Yu. G. Gorbunova, et al., Dokl. Akad. Nauk 403, 489 (2005).Google Scholar
  2. 2.
    A. V. Vannikov, A. D. Grishina, Yu. G. Gorbunova, et al., Zh. Fiz. Khim. 80, 537 (2006) [Russ. J. Phys. Chem. 80, 453 (2006)].Google Scholar
  3. 3.
    A. D. Grishina, F. Yu. Konnov, Yu. G. Gorbunova, et al., Zh. Fiz. Khim. 81, 1122 (2007) [Russ. J. Phys. Chem. 81, 982 (2007)].Google Scholar
  4. 4.
    V. V. Shelkovnikov, R. V. Markov, A. I. Plekhanov, et al., Khim. Vys. Energ. 36, 295 (2002).Google Scholar
  5. 5.
    M. G. Kusyk, Phys. Rev. Lett. 85, 1218 (2000).CrossRefGoogle Scholar
  6. 6.
    G. de la Torre, P. Vazquez, F. Agullo-Lopez, and T. Torres, Chem. Rev. 104, 3723 (2004).CrossRefGoogle Scholar
  7. 7.
    E. S. Manas, F. C. Spano, and L. X. Chen, J. Chem. Phys. 107, 707 (1997).CrossRefGoogle Scholar
  8. 8.
    V. V. Arslanov, Yu. G. Gorbunova, S. L. Selektor, et al., Izv. Akad. Nauk, Ser. Khim., No. 11, 2426 (2004).Google Scholar
  9. 9.
    I. Horcas, R. Fernandez, J. M. Gomes-Rodriguez, et al., Rev. Sci. Instrum. 78, 013705 (2007).CrossRefGoogle Scholar
  10. 10.
    Yu. Yu. Enakieva, Yu. G. Gorbunova, S. E. Nefedov, and A. Yu. Tsivadze, Mendeleev Commun. 14(5), 193 (2004).CrossRefGoogle Scholar
  11. 11.
    M. Sheik-Bahae, A. A. Said, T.-H. Wei, et al., IEEE J. Quantum Electron 26, 760 (1990).CrossRefGoogle Scholar
  12. 12.
    R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996), Chs. 6–10.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. D. Grishina
    • 1
  • V. I. Zolotarevskii
    • 1
  • Yu. G. Gorbunova
    • 1
  • L. Ya. Pereshivko
    • 1
  • Yu. Yu. Enakieva
    • 1
  • T. V. Krivenko
    • 1
  • V. V. Savel’ev
    • 1
  • A. V. Vannikov
    • 1
    Email author
  • A. Yu. Tsivadze
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations