Russian Journal of Physical Chemistry A

, Volume 83, Issue 6, pp 1012–1017 | Cite as

The physicochemical properties of micro/mesoporous materials prepared by the recrystallization of zeolite BEA

  • V. V. Ordomskii
  • Yu. V. Monakhova
  • E. E. Knyazeva
  • N. S. Nesterenko
  • I. I. Ivanova
Physical Chemistry of Surface Phenomena

Abstract

Micro-mesoporous materials with various ratios between micro- and mesopores were prepared by the recrystallization of zeolite BEA in an alkaline medium in the presence of cetyltrimethylammonium bromide. The materials were characterized by X-ray diffraction, low-temperature nitrogen adsorption, and IR spectroscopy. Recrystallization under mild conditions did not cause substantial changes in the number of acid centers but increased the accessibility of acid centers to large-sized molecules because of the creation of mesopores. An increase in the degree of recrystallization caused first partial and then complete zeolite transformation into MSM-41 mesoporous aluminosilicate, which was accompanied by a decrease in the number of acid centers. The IR spectra were used to determine the diffusion coefficients of cumene in the initial and recrystallized samples. Recrystallization increased the diffusion coefficient by 3–4 times.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Tao, H. Kanoh, L. Abrams, and K. Kaneko, Chem. Rev. 106, 896 (2006).CrossRefGoogle Scholar
  2. 2.
    Y. Li, R. Pan, X. Li, et al., Shiyou Huagong (Petrochem. Technol.) 34, 188 (2005).Google Scholar
  3. 3.
    R. Dutartre, L. C. Menorval, F. Di Renzo, et al., Microporous Mater. 5–6, 311 (1996).Google Scholar
  4. 4.
    H. Ajot, J. F. J. Lynch, F. Raatz, and P. Caullet, Stud. Surf. Sci. Cat. 62, 583 (1991).CrossRefGoogle Scholar
  5. 5.
    D. McQueen, B. H. Chiche, et al., J. Catal. 161, 587 (1996).CrossRefGoogle Scholar
  6. 6.
    S. P. Naik, A. S. T. Chiang, R. W. Thompson, et al., Microporous Mesoporous Mater. 60, 213 (2003).CrossRefGoogle Scholar
  7. 7.
    D. T. On, D. Lutic, and S. Kaliagine, Microporous Mesoporous Mater. 44, 435 (2001).CrossRefGoogle Scholar
  8. 8.
    I. I. Ivanova, A. S. Kuznetsov, V. V. Yuschenko, and E. E. Knyazeva, Pure Appl. Chem. 76, 1647 (2004).CrossRefGoogle Scholar
  9. 9.
    S. Inagaki, M. Ogura, T. Inami, et al., Microporous Mesoporous Mater. 74, 163 (2004).CrossRefGoogle Scholar
  10. 10.
    I. I. Ivanova, A. S. Kuznetsov, O. A. Ponomareva, et al., Stud. Surf. Sci. Cat. 158, 121 (2005).CrossRefGoogle Scholar
  11. 11.
    I. I. Ivanova and E. E. Knyazeva, RF Patent No. 2282587 (2006).Google Scholar
  12. 12.
    I. I. Ivanova, O. A. Ponomareva, E. E. Knyazeva, et al., RF Patent No. 2288034 (2006).Google Scholar
  13. 13.
    V. V. Ordomsky, V. Y. Murzin, Yu. V. Monakhova, et al., Microporous Mesoporous Mater. 105, 101 (2007).CrossRefGoogle Scholar
  14. 14.
    A. Vimont, F. Thibault-Starzyk, and J. C. Lavalley, J. Phys. Chem. B 104, 286 (2000).CrossRefGoogle Scholar
  15. 15.
    J. Pierez-Pariente, J. Sanz, V. Fornes, and A. Corma, J. Catal. 124, 217 (1990).CrossRefGoogle Scholar
  16. 16.
    K. Gora-Marek and J. Datka, Appl. Catal. A Gen. 302, 104 (2006).CrossRefGoogle Scholar
  17. 17.
    M. Guisnet, P. Ayrault, C. Coutanceau, et al., J. Chem. Soc., Faraday Trans. 93, 1661 (1997).CrossRefGoogle Scholar
  18. 18.
    A. Ungureanu, T. V. Hoang, OnD. Trong, et al., Appl. Catal. A Gen. 294, 92 (2005).CrossRefGoogle Scholar
  19. 19.
    H. G. Karge and W. Niessen, Catal. Today 8, 451 (1991).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • V. V. Ordomskii
    • 1
  • Yu. V. Monakhova
    • 1
  • E. E. Knyazeva
    • 1
  • N. S. Nesterenko
    • 1
  • I. I. Ivanova
    • 1
  1. 1.Faculty of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations