Advertisement

Russian Journal of Physical Chemistry A

, Volume 83, Issue 2, pp 158–166 | Cite as

The molecular and ionic sublimation of holmium tribromide

  • M. F. ButmanEmail author
  • L. S. Kudin
  • V. B. Motalov
  • A. S. Kryuchkov
  • A. E. Grishin
  • K. W. Krämer
Chemical Thermodynamics and Thermochemistry
  • 40 Downloads

Abstract

The molecular and ionic composition of vapor over holmium tribromide was studied by high-temperature mass spectrometry under the conditions of sublimation from a Knudsen effusion cell and from the open single crystal surface. The partial pressures of HoBr3 and Ho2Br6 in saturated vapor and the ratio between their sublimation coefficients under free vaporization conditions were determined. The intensities of lines in the electron impact mass spectra and their temperature dependences were different under Knudsen and Langmuir conditions, which was evidence of superthermal vibrational-rotational excitation of molecules sublimed from the open surface. The enthalpies and activation energies of sublimation of HoBr3 crystals as monomers and dimers were calculated. The emission of HoBr 4 and Ho2Br 7 negative ions was observed under both sublimation conditions. Ion-molecular equilibria in the LaBr3-HoBr3 system were studied. The enthalpies of formation of the HoBr3 and Ho2Br6 molecules and HoBr 4 and Ho2Br 7 negative ions in the gas phase were calculated.

Keywords

Saturated Vapor Pressure Holmium Tribromide Electron Impact Mass Spectrum Appearance Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. F. Butman, V. B. Motalov, L. S. Kudin, et al., Zh. Fiz. Khim. 82(2), 227 (2008) [Russ. J. Phys. Chem. A 82 (2), 164 (2008)].Google Scholar
  2. 2.
    M. F. Butman, L. S. Kudin, V. B. Motalov, et al., Zh. Fiz. Khim. 82(4), 631 (2008) [Russ. J. Phys. Chem. A 82 (4), 535 (2008)].Google Scholar
  3. 3.
    M. F. Butman, L. S. Kudin, V. B. Motalov, et al., Zh. Fiz. Khim. 82(5), 885 (2008) [Russ. J. Phys. Chem. A 82 (5), 767 (2008)].Google Scholar
  4. 4.
    M. F. Butman, L. S. Kudin, A. E. Grishin, et al., Zh. Fiz. Khim. [Russ. J. Phys. Chem. A 82 (3), 459 (2008)].Google Scholar
  5. 5.
    T. Markus, U. Niemann, and K. Hilpert, J. Phys. Chem. Solids 66, 372 (2005).CrossRefGoogle Scholar
  6. 6.
    G. Meyer and M. S. Wickleder, in Handbook on the Physics and Chemistry of Rare Earth, Ed. by K. A. Gschneidner and L. Eyring (Elsevier, Amsterdam, 2000), Vol. 28, Chapt. 177, p. 53.Google Scholar
  7. 7.
    G. Meyer, Inorg. Synth. 25, 146 (1989).CrossRefGoogle Scholar
  8. 8.
    C. Gietmann, G. Gigli, U. Niemann, and K. Hilpert, Proc. Electrochem. Soc. 97–39, 657 (1997).Google Scholar
  9. 9.
    Cl. Gietmann, K. Hilpert, and H. Nickel, Thermodynamische Eigenschaften von Halogeniden der Lanthaniden (Forschungszentrum Julich, 1997).Google Scholar
  10. 10.
    P. W. Gilles, B. R. Conard, R. I. Sheldon, and J. E. Bennet, in Thermodynamics of Nuclear Materials (IAEA, Vienna, 1975), Vol. 2, p. 499.Google Scholar
  11. 11.
    J. B. Mann, in Recent Developments in Mass Spectrometry, Ed. by K. Ogata and T. Haykawa (University of Tokyo Press, Tokyo, 1970), p. 814.Google Scholar
  12. 12.
    Thermodynamic Properties of Pure Substances: A Handbook, 3rd ed., Ed. by V. P. Glushko (Nauka, Moscow, 1978–1984), Vols. 1–4 [in Russian].Google Scholar
  13. 13.
    V. Piacente, B. Brunetti, P. Scardala, and A. R. Villani, J. Chem. Eng. Data 47, 388 (2002).CrossRefGoogle Scholar
  14. 14.
    L. B. Pankratz, Thermodynamic Properties of Halides, Bureau of Mines 674 Bull. (US Department Int., Washington, DC, 1984).Google Scholar
  15. 15.
    A. Kovács and R. G. M. Konings, J. Phys. Chem. Ref. Data 33, 377 (2004).CrossRefGoogle Scholar
  16. 16.
    A. Kovács, Chem. Phys. Lett. 319, 238 (2000).CrossRefGoogle Scholar
  17. 17.
    A. Makhmadmurodov, M. Temurova, and A. Sharipov, Izv. Akad. Nauk Tadzh. SSR, Otd. Fiz.-Mat., Khim. Geol. Nauk 111(1), 39 (1989).Google Scholar
  18. 18.
    E. H. P. Cordfunke and R. J. M. Konings, Thermochim. Acta 375, 17 (2001).CrossRefGoogle Scholar
  19. 19.
    A. M. Sapegin, A. V. Baluev, and O. P. Garkin, Zh. Neorg. Khim. 32(2), 318 (1987).Google Scholar
  20. 20.
    M. F. Butman, A. A. Smirnov, L. S. Kudin, and Z. A. Munir, Int. J. Mass Spectrom. 194, 55 (2000).Google Scholar
  21. 21.
    M. F. Butman, L. S. Kudin, A. A. Smirnov, and Z. A. Munir, Int. J. Mass Spectrom. 202, 121 (2000).CrossRefGoogle Scholar
  22. 22.
    M. F. Butman, A. A. Smirnov, L. S. Kudin, and H. Dabringhaus, Surf. Sci. 489, 83 (2001).CrossRefGoogle Scholar
  23. 23.
    H. Dabringhaus and M. F. Butman, J. Phys: Condens. Matter 15, 5801 (2003).CrossRefGoogle Scholar
  24. 24.
    M. F. Butman, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 46(3), 141 (2003).Google Scholar
  25. 25.
    B. Ruscic, G. L. Goodman, and J. Berkowitz, J. Chem. Phys. 78, 5443 (1983).CrossRefGoogle Scholar
  26. 26.
    M. F. Butman and H. Dabringhaus, Surf. Sci. 540, 313 (2003).CrossRefGoogle Scholar
  27. 27.
    L. N. Sidorov, M. V. Korobov, and L. V. Zhuravleva, Mass Spectrometric Thermodynamic Investigations (Mosk. Gos. Univ., Moscow, 1985) [in Russian].Google Scholar
  28. 28.
    L. S. Kudin, D. E. Vorob’ev, and V. B. Motalov, Neorg. Mater. 41(12), 1510 (2005) [Inorg. Mater. 41 (12), 1334 (2005)].CrossRefGoogle Scholar
  29. 29.
    V. G. Solomonik, A. N. Smirnov, and M. A. Mileev, Koord. Khim. 31(3), 218 (2005) [Russ. J. Coord. Chem. 31 (3), 203 (2005)].Google Scholar
  30. 30.
    D. E. Vorob’ev, L. S. Kudin, and V. B. Motalov, Zh. Fiz. Khim. 79(11), 1972 (2005) [Russ. J. Phys. Chem. 79 (11), 1751 (2005)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • M. F. Butman
    • 1
    Email author
  • L. S. Kudin
    • 1
  • V. B. Motalov
    • 1
  • A. S. Kryuchkov
    • 1
  • A. E. Grishin
    • 1
  • K. W. Krämer
    • 2
  1. 1.Ivanovo State University of Chemical TechnologyIvanovoRussia
  2. 2.Bern UniversityBernSwitzerland

Personalised recommendations