The properties of 4′-N,N-dimethylaminoflavonol in the ground and excited states

  • V. V. Moroz
  • A. G. Chalyi
  • A. D. Roshal
The International Conference “Modern Physical Chemistry for Advanced Materials”


The mechanism of protonation of 4-N,N-dimethylaminoflavonol and the structure of its protolytic forms in the ground and excited states were studied by electron absorption and fluorescence (steady-state and time-resolved) spectroscopy and with the use of the RM1 quantum-chemical method. A comparison of equilibrium constants and the theoretical enthalpies of formation showed that excitation should be accompanied by the inversion of the basicity of the electron acceptor groups of this compound and, as a consequence, changes in the structure of its monocationic form. An analysis of the spectral parameters of the protolytic 4-N,N-dimethylaminoflavonol forms, however, showed that their structure and the sequence of protonation in the excited state were the same as in the ground state. Changes in the structure of the monocation in the excited state were not observed because of the fast radiationless deactivation of this form and the occurrence of excited state intramolecular proton transfer in aprotic solvents.


Excited State Proton Transfer Aprotic Solvent Protonation Constant Excited State Intramolecular Proton Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D. McMorrow and M. Kasha, Chem. Phys. Lett. 68, 382 (1979).CrossRefGoogle Scholar
  2. 2.
    D. McMorrow and M. Kasha, J. Phys. Chem. 88, 2235 (1984).CrossRefGoogle Scholar
  3. 3.
    A. J. G. Strandjord, D. E. Smith, and P. F. Barbara, J. Phys. Chem. 89, 2362 (1985).CrossRefGoogle Scholar
  4. 4.
    A. J. G. Strandjord and P. F. Barbara, J. Phys. Chem. 89, 2355 (1985).CrossRefGoogle Scholar
  5. 5.
    A. Douhal, M. Sanz, M. A. Carranza, et al., Chem. Phys. Lett. 394, 54 (2004).CrossRefGoogle Scholar
  6. 6.
    A. D. Roshal, J. A. Organero, and A. Douhal, Chem. Phys. Lett. 379, 53 (2003).CrossRefGoogle Scholar
  7. 7.
    V. G. Pivovarenko, Ukr. Bioorg. Acta 3(1), 3 (2005).Google Scholar
  8. 8.
    A. P. Demchenko, FEBS Lett. 580, 2951 (2006).CrossRefGoogle Scholar
  9. 9.
    A. P. Demchenko, A. S. Klymchenko, V. G. Pivovarenko, et al., Phys. Chem. Chem. Phys. 5, 461 (2003).Google Scholar
  10. 10.
    A. P. Demchenko, A. S. Klymchenko, V. G. Pivovarenko, et al., J. Fluorescence 13, 291 (2003).CrossRefGoogle Scholar
  11. 11.
    A. D. Roshal, A. V. Grigorovich, A. O. Doroshenko, et al., J. Phys. Chem. A 102, 5907 (1998).CrossRefGoogle Scholar
  12. 12.
    A. D. Roshal, A. V. Grigorovich, A. O. Doroshenko, et al., J. Photochem. Photobiol., A 127, 89 (1999).CrossRefGoogle Scholar
  13. 13.
    E. N. Nevskaya and V. A. Nazarenko, Zh. Anal. Khim. 27(9), 1699 (1972).Google Scholar
  14. 14.
    V. F. Valuk, G. Duportail, and V. G. Pivovarenko, J. Photochem. Photobiol., A 175, 226 (2005).CrossRefGoogle Scholar
  15. 15.
    S. M. Ormson, R. G. Brown, F. Volmer, and W. Rettig, J. Photochem. Photobiol., A 81, 65 (1994).CrossRefGoogle Scholar
  16. 16.
    S. Ameer-Beg, S. M. Ormson, X. Poteau, et al., J. Phys. Chem. A 108, 6938 (2004).CrossRefGoogle Scholar
  17. 17.
    A. Douhal, M. Sanz, M. A. Carranza, et al., Chem. Phys. Lett. 394, 2004 (2004).CrossRefGoogle Scholar
  18. 18.
    J. Algar and D. E. Hurley, Proc. R. Irish Acad., Sect. B 43, 83 (1936).Google Scholar
  19. 19.
    M. A. Smith, R. M. Neumann, and R. A. Webb, J. Heterocycl. Chem. 5, 425 (1968).CrossRefGoogle Scholar
  20. 20.
    O. A. Ponomarev, A. O. Doroshenko, and V. G. Mitina, Khim. Fiz. 8, 1369 (1989).Google Scholar
  21. 21.
    Th. Förster, Chem. Phys. Lett. 12, 422 (1971).CrossRefGoogle Scholar
  22. 22.
    I. I. Martynov, A. B. Demyashkevich, B. M. Uzhinov, and M. G. Kuz’min, Usp. Khim. 46(3) (1977).Google Scholar
  23. 23.
    A. O. Doroshenko, Srectra Data Lab (Khark. Nats. Univ. im. V. N. Karazina, Kharkov, 1999) [in Russian].Google Scholar
  24. 24.
    G. B. Rocha, R. O. Freire, A. M. Simas, and J. J. P. Stewart, J. Comput. Chem. 27, 1101 (2006).CrossRefGoogle Scholar
  25. 25.
    J. P. P. Stewart, MOPAC 2002 (Fujitsu, Tokyo, 2002).Google Scholar
  26. 26.
    A. Klamt and G. Z. Schuurmann, J. Chem. Soc., Perkin Trans., p. 799 (1993).Google Scholar
  27. 27.
    T. C. Swinney and D. F. Kelley, J. Phys. Chem. 99, 211 (1993).CrossRefGoogle Scholar
  28. 28.
    Aromatic Amines, Vol. 4 of Comprehensive Organic Chemistry: The Synthesis and Reactions of Organic Compounds, Ed. by D. H. R. Barton and W. D. Ollis (Pergamon, Oxford, 1979; Khimiya, Moscow, 1982).Google Scholar
  29. 29.
    S. J. Formosinho and L. G. Arnaut, J. Photochem. Photobiol., A 75, 21 (1993).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Research Institute of ChemistryKarazin Kharkov National UniversityKharkovUkraine

Personalised recommendations