The influence of the temperature of calcining on Co particle-size distribution in the Co/Al2O3 catalyst for the Fischer-Tropsch synthesis

  • P. A. ChernavskiiEmail author
  • Chu Vei
  • A. Yu. Khodakov
  • G. V. Pankina
  • N. V. Peskov
Chemical Kinetics and Catalysis


The mean size of Co particles and the variance of distribution were shown to increase as the temperature of calcining grew. The size was maximum at a 400°C temperature of calcining and decreased somewhat at 500°C. The mean Co particle size decreased in the presence of Pt, and the particle-size distribution narrowed. A decrease in the mean particle size in the Co/Pt/Al2O3 catalyst increased selectivity with respect to methane and decreased selectivity with respect to C5+.


Light Hydrocarbon Tropsch Synthesis Cobalt Nitrate Isothermal Reduction Cobalt Oxide Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. C. Reuel and C. H. Bartholomew, J. Catal. 85, 78 (1984).CrossRefGoogle Scholar
  2. 2.
    E. Iglesia, Appl. Catal., A 161, 59 (1997).CrossRefGoogle Scholar
  3. 3.
    G. I. Bezemer, A. van Laak, A. J. van Dillen, and K. P. de Jong, Stud. Surf. Sci. Catal. 147, 259 (2004).CrossRefGoogle Scholar
  4. 4.
    A. Martinez, C. Lopez, F. Marquez, and I. Diaz, J. Catal. 220, 486 (2003).CrossRefGoogle Scholar
  5. 5.
    A. Barbier, A. Tuel, I. Arcon, et al., J. Catal. 200, 106 (2001).CrossRefGoogle Scholar
  6. 6.
    J. van de Loosdrecht, A. M. van der Haar, A. J. van der Kraan, et al., Appl. Catal. 150, 365 (1997).CrossRefGoogle Scholar
  7. 7.
    E. van Steen, G. S. Sewell, R. A. Makhothe, et al., J. Catal. 162, 220 (1996).CrossRefGoogle Scholar
  8. 8.
    D. Schanke, S. Vada, E. A. Blekkan, et al., J. Catal. 156, 85 (1995).CrossRefGoogle Scholar
  9. 9.
    P. A. Chernavskii, A. S. Lermontov, G. V. Pankina, et al., Kinet. Katal. 43(2), 292 (2002) [Kinet. Catal. 43 (2), 268 (2002)].CrossRefGoogle Scholar
  10. 10.
    P. A. Chernavskii, Zh. Fiz. Khim. 77(4), 636 (2003) [Russ. J. Phys. Chem. 77 (4), 560 (2003)].Google Scholar
  11. 11.
    J. Sort, S. Surinach, J. S. Munoz, et al., Phys. Rev. B: Condens. Matter 68, 014421 (1997).Google Scholar
  12. 12.
    P. A. Chernavskii, Kinet. Katal. 46, 1 (2005) [Kinet. Catal. 46 (5), 634 (2005)].CrossRefGoogle Scholar
  13. 13.
    J. P. Chen, C. M. Sorensen, and K. J. Klabunde, Phys. Rev. B: Condens. Matter 51, 11527 (1995).Google Scholar
  14. 14.
    O. Kitakami, H. Sato, Y. Shimada, et al., Phys. Rev. B: Condens. Matter 56, 13849 (1997).Google Scholar
  15. 15.
    Jr. Brown, Ann. N. Y. Acad. Sci. 147, 463 (1969).CrossRefGoogle Scholar
  16. 16.
    J. L. Dormann, D. Fiorani, and E. Tronc, Adv. Chem. Phys. 98, 283 (1997).CrossRefGoogle Scholar
  17. 17.
    L. Weil, J. Chim. Phys. Phys.-Chim. Biol. 51, 715 (1954).Google Scholar
  18. 18.
    P. A. Chernavskii and V. V. Lunin, Kinet. Katal. 34, 531 (1993).Google Scholar
  19. 19.
    A. R. Belambe, R. Oukaci, and J. G. Goodwin, J. Catal. 166, 8 (1997).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • P. A. Chernavskii
    • 1
    Email author
  • Chu Vei
    • 2
  • A. Yu. Khodakov
    • 2
  • G. V. Pankina
    • 1
  • N. V. Peskov
    • 3
  1. 1.Faculty of ChemistryMoscow State UniversityLeninskie gory, MoscowRussia
  2. 2.Laboratoire de Catalyse de LitteUniversite des Sciences et Technologie de LilleLilleFrance
  3. 3.Faculty of Computational Mathematics and CyberneticsMoscow State UniversityLeninskie gory, MoscowRussia

Personalised recommendations