Russian Journal of Physical Chemistry A

, Volume 81, Issue 9, pp 1425–1428 | Cite as

Deconvolution of lignin fluorescence spectra: A contribution to the comparative structural studies of lignins

  • D. Djikanović
  • A. Kalauzi
  • K. Radotić
  • C. Lapierre
  • M. Jeremić
Structure of Matter and Quantum Chemistry


In this work, we deconvoluted the fluorescence spectra of lignin and a lignin model compound using a combination of one symmetric (Gaussian) and the most appropriate number of asymmetric (Log-normal) models. We aimed to obtain new data on the structural characteristics of lignin as a complex molecule using fluorescence spectroscopy in combination with FTIR spectra. We analyzed the emission spectra of the lignin model compound, DHP, and isolated lignins from a deciduous tree, poplar, and a coniferous tree, spruce. The number of applied asymmetric components was varied for each sample until the component positions obtained from deconvolution of a series of spectra became constant. The lignin model compound contains fewer components in the emission spectrum. The same components in the spectra of all three samples show that they contain the same fluorophores. The small shift of the peak position can be attributed to the influence of different environments. The FTIR spectra of the three polymers show a small difference between their structures. The main difference among the IR spectra of the three samples is in the intensity of some peaks.


Lignin Emission Spectrum Deconvolution Poplar Coniferous Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Freudenberg, Angew. Chem. 68, 84 (1956).CrossRefGoogle Scholar
  2. 2.
    H. Erdtman, Ind. Eng. Chem. 49, 1385 (1957).CrossRefGoogle Scholar
  3. 3.
    K. Radotić, J. Simić-Krstić, M. Jeremić, and M. Trifunović, Biophys. J. 66, 1763 (1994).CrossRefGoogle Scholar
  4. 4.
    C. Lapierre, B. Monties and C. Rolando, Holzforschung 40, 113 (1986).CrossRefGoogle Scholar
  5. 5.
    C. Lapierre, in Forage Cell Wall Structure and Digestibility (ASA-CSSA-SSSA, Segoe Rd., Madisson, 1993), Ch. 6, p. 133.Google Scholar
  6. 6.
    O. Faix, Holzforschung 45, 21 (1991).Google Scholar
  7. 7.
    K. Radotić, A. Kalauzi, D. Djikanović, et al., J. Photochem. Photobiol., B 83, 1 (2006).CrossRefGoogle Scholar
  8. 8.
    S. Barsberg, T. Elder, and C. Felby, Chem. Mater. 15, 649 (2003).CrossRefGoogle Scholar
  9. 9.
    B. Valeur, in Molecular Luminescence Spectroscopy Methods and Applications, Ed. by S. G. Schulman (Wiley, New York, 1993), Part 3, p. 25.Google Scholar
  10. 10.
    A. E. Machado, D. E. Nicodem, R. Ruggiero, et al., J. Photochem. Photobiol., A 138, 253 (2001).CrossRefGoogle Scholar
  11. 11.
    B. Albinsson, S. Li, K. Lundquist, and R. Stomberg, J. Mol. Struct. 508, 19 (1999).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • D. Djikanović
    • 1
  • A. Kalauzi
    • 1
  • K. Radotić
    • 1
  • C. Lapierre
    • 2
  • M. Jeremić
    • 2
  1. 1.Centre for Multidisciplinary Studies, Laboratory of BiophysicsUniversity of BelgradeBelgradeSerbia
  2. 2.Faculty of Physical ChemistryUniversity of BelgradeBelgradeSerbia

Personalised recommendations