Advertisement

Russian Journal of Physical Chemistry A

, Volume 81, Issue 9, pp 1418–1424 | Cite as

Chemical oxidative polymerization of dianilinium 5-sulfosalicylate

  • G. Ćirić-MarjanovićEmail author
  • A. Janošević
  • B. Marjanović
  • M. Trchová
  • J. Stejskal
  • P. Holler
Structure of Matter and Quantum Chemistry

Abstract

Dianilinium 5-sulfosalicylate was prepared in situ and then oxidized in aqueous solution with ammonium peroxydisulfate. The precipitated polyaniline 5-sulfosalicylate was soluble in polar aprotic solvents and showed conductivity of ∼0.1 S cm−1. Scanning electron microscopy revealed the coexistence of nanorods and granular morphology of the polyaniline 5-sulfosalicylate. The weight-average molecular weight and poly-dispersity index were determined by gel-permeation chromatography as 53000 and 9.0, respectively. FTIR spectroscopic analysis combined with AM1 and MNDO-PM3 semi-empirical quantum chemical studies of the polymerization mechanism indicate both covalent and ionic bonding of sulfosalicylate to polyaniline chains. Raman spectroscopy proved the presence of substituted phenazine structural units besides ordinary emeraldine segments.

Keywords

PANI FTIR Spectroscopic Analysis PANI Salt Polymerization Mechanism Chemical Oxidative Polymerization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Stejskal, D. Hlavatá, P. Holler, et al., Polym. Int. 53, 294 (2004).CrossRefGoogle Scholar
  2. 2.
    D. C. Trivedi and S. K. Dhawan, Synth. Met. 58, 309 (1993).CrossRefGoogle Scholar
  3. 3.
    A. Raghunathan, G. Rangarajan, and D. C. Trivedi, Synth. Met. 81, 39 (1996).CrossRefGoogle Scholar
  4. 4.
    G. Ćirić-Marjanović, B. Marjanović, M. Popović, et al., Elektrokhimiya 42, 1497 (2006) [Russ. J. Electrochem. 42, 1358 (2006)].Google Scholar
  5. 5.
    B. Marjanović, G. Ćirić-Marjanović, I. Juranić, and P. Holler, Abstracts of Papers (Herceg Novi, SCG, 2005), p. 75.Google Scholar
  6. 6.
    M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart, J. Am. Chem. Soc. 107, 3902 (1985).CrossRefGoogle Scholar
  7. 7.
    J. J. P. Stewart, J. Comput. Chem. 10, 209 (1989).CrossRefGoogle Scholar
  8. 8.
    A. Klamt and G. Schuurmann, J. Chem. Soc., Perkin Trans. 2, p. 799 (1993).Google Scholar
  9. 9.
    A. Banerjee, N. Adams, J. Simons, and R. Shepard, J. Phys. Chem. 89, 52 (1985).CrossRefGoogle Scholar
  10. 10.
    J. Baker. J. Comput. Chem. 7, 385 (1986).CrossRefGoogle Scholar
  11. 11.
    M. Trchová, E. N. Konyushenko, J. Stejskal, et al., J. Phys. Chem. B 110, 9461 (2006).CrossRefGoogle Scholar
  12. 12.
    E. T. Kang, K. G. Neoh, and K. L. Tan, Prog. Polym. Sci. 23, 277 (1998).CrossRefGoogle Scholar
  13. 13.
    I. Šeděnková, M. Trchová N. V. Blinova, and J. Stejskal, Thin Solid Films 515, 1640 (2006).CrossRefGoogle Scholar
  14. 14.
    J. Stejskal, I. Sapurina, M. Trchová, and J. Prokeš, Chem. Mater. 14, 3602 (2002).CrossRefGoogle Scholar
  15. 15.
    G. Socrates, (Wiley, New York, 2001), pp. 220–222, 272.Google Scholar
  16. 16.
    H. T. Varghese, C. Y. Panicker, and D. Philip, J. Raman Spectrosc. 38, 309 (2007).CrossRefGoogle Scholar
  17. 17.
    M. I. Boyer, S. Quillard, G. Louarn, et al., J. Phys. Chem. B 104, 8952 (2000).CrossRefGoogle Scholar
  18. 18.
    M. Cochet, G. Louarn, S. Quillard, et al., J. Raman Spectrosc. 31, 1041 (2000).CrossRefGoogle Scholar
  19. 19.
    G. Louarn, M. Lapkowski, S. Quillard, et al., J. Phys. Chem. 100, 6998 (1996).CrossRefGoogle Scholar
  20. 20.
    R. Mažeikiené, G. Niaura, and A. Malinauskas. J. Electroanal. Chem. 580, 87 (2005).CrossRefGoogle Scholar
  21. 21.
    M. Bartonek, N. S. Sariciftci, and H. Kuzmany, Synth. Met. 36, 83 (1990).CrossRefGoogle Scholar
  22. 22.
    R. Mažeikiené, A. Statino, Z. Kuodis, et al., Electrochem. Commun. 8, 1082 (2006).CrossRefGoogle Scholar
  23. 23.
    T. J. Durnick and S. C. Wait, J. Mol. Spectrosc. 42, 211 (1972).CrossRefGoogle Scholar
  24. 24.
    G. M. do Nascimento, V. R. L. Constantino, R. Landers, and M. L. A. Temperini, Macromolecules 37, 9373 (2004).CrossRefGoogle Scholar
  25. 25.
    G. Ćirić-Marjanović, M. Trchová, and J. Stejskal, Collect. Czech. Chem. Commun. 71, 1407 (2006).CrossRefGoogle Scholar
  26. 26.
    J. Stejskal, I. Sapurina, M. Trchová, et al., Polymer 47, 8253 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • G. Ćirić-Marjanović
    • 2
    Email author
  • A. Janošević
    • 1
  • B. Marjanović
    • 2
  • M. Trchová
    • 3
  • J. Stejskal
    • 3
  • P. Holler
    • 3
  1. 1.Faculty of Physical ChemistryUniversity of BelgradeBelgradeSerbia
  2. 2.CentrohemStara PazovaSerbia
  3. 3.Institute of Macromolecular ChemistryAcademy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations