Russian Journal of Physical Chemistry A

, Volume 81, Issue 5, pp 768–772 | Cite as

A study of cadmium sulfide nanocrystalline films by grazing incidence X-ray diffraction

  • N. S. Kozhevnikova
  • A. A. Rempel
  • F. Hergert
  • A. Magerl
Physical Chemistry of Nanoclusters and Nanomaterials


Thin cadmium sulfide films were prepared on a monocrystalline-crystal silicon substrate by chemical deposition from aqueous solutions. Grazing incidence X-ray diffraction revealed that the cadmium sulfide films are comprised of nanocrystal particles, with 80% of the particles having a size of 5 ± 1 nm. Some nanocrystals have a wurtzite structure, while others, a sphalerite one. The presence of cubic phase in the films is indicative of a nonequilibrium state of the nanocrystalline films. Thirty minutes after the onset of the formation of cadmium sulfide, the size and crystal structure of the constituent particles of the film become independent of the deposition time—only the film thickness increases. In addition, the initial stage of the formation of the cadmium sulfide film is accompanied by the deposition of cadmium hydroxide Cd(OH)2.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.-Y. Yeh, Z. W. Lu, S. Froyen, and A. Zunger, Phys. Rev. B: Condens. Matter 46(16), 10086 (1992).Google Scholar
  2. 2.
    A. W. Stevenson, M. Milanko, and Z. Barnea, Acta Crystallogr., Sect. B: Struct. Sci. 40, 521 (1984).CrossRefGoogle Scholar
  3. 3.
    X.-S. Zhao, J. Schroeder, T. G. Bilodeau, and L.-G. Hwa, Phys. Rev. B: Condens. Matter 40(2), 1257 (1989).ADSGoogle Scholar
  4. 4.
    E. V. Bagaev, K. S. Zhuravlev, L. L. Sveshnikova, et al., Fiz. Tekh. Poluprovodn. (St.-Petersburg) 37(11), 1358 (2003) [Semiconductors 37, 1321 (2003)].Google Scholar
  5. 5.
    O. Zelaya-Angel, F. Castillo-Alvarado, J. Avendano-Lopez, et al., Solid State Commun. 104(3), 161 (1997).CrossRefGoogle Scholar
  6. 6.
    O. de Melo, L. Hernandez, O. Zelaya-Angel, et al., Appl. Phys. Lett. 65(10), 1278 (1994).CrossRefADSGoogle Scholar
  7. 7.
    T. Nakanishi and K. Ito, Sol. Energy Mater. Sol. Cells 35, 171 (1994).CrossRefGoogle Scholar
  8. 8.
    N. S. Kozhevnikova, A. S. Kurlov, A. A. Uritskaya, and A. A. Rempel’, Zh. Strukt. Khim. 45, 156 (2004).Google Scholar
  9. 9.
    T. Yu. Preobrazhenskaya and R. A. Yusupov, Zh. Fiz. Khim. 48(3), 724 (1974).Google Scholar
  10. 10.
    G. A. Kitaev, A. A. Uritskaya, L. E. Yatlova, and V. R. Mirolyubov, Zh. Prikl. Khim. 67(10), 1612 (1994).Google Scholar
  11. 11.
    L. E. Yatlova and G. A. Kitaev, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 12(6), 709 (1969).Google Scholar
  12. 12.
    G. A. Kitaev and A. A. Uritskaya, Zh. Prikl. Khim. 72(4), 569 (1999) [Russ. J. Appl. Chem. 72 (4), 592 (1999)].Google Scholar
  13. 13.
    G. A. Kitaev, Yu. N. Makurin, and V. I. Dvoinin, Zh. Fiz. Khim. 50(12), 3074 (1976).Google Scholar
  14. 14.
    A. A. Uritskaya, G. A. Kitaev, and N. S. Belova, Zh. Prikl. Khim. 75(5), 864 (2002) [Russ. J. Appl. Chem. 75 (5), 846 (2002)].Google Scholar
  15. 15.
    A. A. Rempel, N. S. Kozhevnikova, S. van der Berghe, et al., Phys. Status Solidi B 242(7), R61 (2005).CrossRefADSGoogle Scholar
  16. 16.
    Yu. Yu. Lur’e, A Handbook of Analytical Chemistry (Khimiya, Moscow, 1989) [in Russian].Google Scholar
  17. 17.
    G. A. Kitaev, A. A. Uritskaya, and S. G. Mokrushin, Zh. Fiz. Khim. 39(8), 2065 (1965).Google Scholar
  18. 18.
    P. O’Braien and T. Saeed, J. Cryst. Growth 158(4), 497 (1996).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • N. S. Kozhevnikova
    • 1
  • A. A. Rempel
    • 1
  • F. Hergert
    • 2
  • A. Magerl
    • 2
  1. 1.Institute of Solid-State Chemistry, Ural DivisionRussian Academy of SciencesYekaterinburgRussia
  2. 2.Institut fur Physik der Kondensierten MaterieUniversitat Erlangen-NumbergErlangenGermany

Personalised recommendations