Skip to main content
Log in

Iron Oxide Nanopowders Obtained via Pulsed Laser Ablation, for Supercapacitors

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Nano-sized magnetite powders with addition of iron nitrides were synthesized via pulsed laser ablation (PLA) of an iron target in atmospheric air. A series of iron oxide nanopowders with various phase compositions (ranging from magnetite to hematite) and structures (from 2D lamellas and spherical nanoparticles to continuous 3D structures) were prepared via heat treatment of the initial (as-synthesized) powder at temperatures in the range 200–500°C. The powders were introduced into the composition of carbon paste electrodes (CPEs). The capacitive characteristics of the electrodes prepared were studied in comparison to a commercial electroexplosive iron oxide powder. The capacitances of electrodes were matched to the structural characteristics of the materials and their phase compositions. With the chosen electrode-preparation method, the powder heat-treated at 500°С (sample Fe/500) showed the highest capacitance. The potential of the studied ultrafine materials based on ablative iron oxide was shown for use in electrodes for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. I. Belyakov, Elektrokhim. En. 6, 146 (2006).

    Google Scholar 

  2. B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer/Plenum, New York, 1999).

    Book  Google Scholar 

  3. M. S. Halper and J. C. Ellenbogen, Supercapacitors: A Brief Overview (McLean, MITRE Nanosystems Group, 2006).

    Google Scholar 

  4. E. Tan, Ya. Liu, Sh. Yu, et al., Elektrokhimiya 51, 89 (2015). https://doi.org/10.7868/S0424857014100120

    Article  Google Scholar 

  5. A. Moyseowicz and G. Gryglewicz, Composites B 159, 4 (2019). https://doi.org/10.1016/j.compositesb.2018.09.069

  6. W. Du, Y. -L. Bai, J. Xu, et al., J. Power Sources 402, 281 (2018). https://doi.org/10.1016/j.jpowsour.2018.09.023

    Article  CAS  Google Scholar 

  7. A. V. Alekseev, E. A. Lebedev, I. M. Gavrilin, et al., Izv. Vyssh. Uchebn. Zaved. Elektronika 22, 128 (2017). https://doi.org/10.214151/1561-5405-2017-22-2-128-137

    Google Scholar 

  8. G. Yu. Simenyuk, Yu. A. Zakharov, T. S. Nechaeva, et al., Khim. Interes. Ustoich. Razv. 25, 663 (2017). https://doi.org/10.15372/KhUR20170611

    Article  CAS  Google Scholar 

  9. A. G. Naiknaware, J. U. Chavan, S. H. Kaldate, et al., J. Alloys Compd. 774, 787 (2019). https://doi.org/10.1016/j.jallcom.2018.10.001

    Article  CAS  Google Scholar 

  10. Z. Liu, W. Zhou, S. Wang, et al., J. Alloys Compd. 774, 137 (2019). https://doi.org/10.1016/j.jallcom.2018.09.347

    Article  CAS  Google Scholar 

  11. X. Hong, S. Li, R. Wang, et al., J. Alloys Compd. 775, 15 (2019). https://doi.org/10.1016/j.jallcom.2018.10.099

    Article  CAS  Google Scholar 

  12. A. A. Mikhaylov, A. G. Medvedev, T. A. Tripol’skaya, et al., Russ. J. Inorg. Chem. 61, 1578 (2016). https://doi.org/10.1134/S0036023616120147

    Article  CAS  Google Scholar 

  13. Y. Yao, X. Chen, N. Yu, et al., Russ. J. ElectroChem. 54, 585 (2018). https://doi.org/10.1134/S1023193518070078

    Article  CAS  Google Scholar 

  14. P. Pazhamalai, K. Krishnamoorthy, V. K. Mariappan, et al., J. Colloid Interface Sci. 536, 62 (2019). https://doi.org/10.1016/j.jcis.2018.10.031

    Article  CAS  PubMed  Google Scholar 

  15. J. Ma, X. Guo, Y. Yan, et al., Adv. Sci. 5, 1700986 (2018). https://doi.org/10.1002/advs.201700986

    Article  CAS  Google Scholar 

  16. B. Xu, M. Zheng, H. Tang, et al., Nanotecnology 30, 204002 (2019). https://doi.org/10.1088/1361-6528/ab009f

    Article  CAS  Google Scholar 

  17. Y. Xu, Y. Zhang, X. Song, et al., Funct. Mater. Lett. https://doi.org/10.1142/S179360471950019X

  18. A. Kumar, D. Sarkar, S. Mukherjee, et al., ACS Appl. Mater. Interfaces 10, 42484 (2018). https://doi.org/10.1021/acsami.8b16639

    Article  CAS  PubMed  Google Scholar 

  19. A. Y. Solovieva, Y. V. Ioni, S. P. Gubin, et al., Russ. J. Inorg. Chem. 62, 711 (2017). https://doi.org/10.1134/S0036023617060225

    Article  CAS  Google Scholar 

  20. M. Aghazadeh, I. Karimzadeh, and M. R. Ganjali, J. Electron. Mater. 47, 3026 (2018). https://doi.org/10.1007/s11664-018-6146-4

    Article  CAS  Google Scholar 

  21. H. Sayahi, F. Mohsenzadeh, H. R. Darabi, et al., J. Alloys Compd. 778, 633 (2019). https://doi.org/10.1016/j.jallcom.2018.11.186

    Article  CAS  Google Scholar 

  22. Z. Sun, X. Cai, D.-Y. Feng, et al., Chem. Electro. Chem. 5, 1501 (2018). https://doi.org/10.1002/celc.201800143

    Article  CAS  Google Scholar 

  23. K. Jiang, B. Sun, M. Yao, et al., Micropor. Mesopor. Mater. (2018). https://doi.org/10.1016/j.micromeso.2018.02.015

  24. S. Pal, S. Majumder, S. Dutta, et al., J. Phys. D: Appl. Phys. 51, 375501 (2018). https://doi.org/10.1088/1361-6463/aad5b3

    Article  CAS  Google Scholar 

  25. A. E. Dosovitskii, E. V. Grishechkina, A. L. Mikhlin, et al., Russ. J. Inorg. Chem. 62, 702 (2017). https://doi.org/10.1134/S0036023617060055

    Article  CAS  Google Scholar 

  26. R. Barik, N. Moghimi, K. T. Leung, et al., Ionics 25, 1793 (2019). https://doi.org/10.1007/s11581-018-2625-0

    Article  CAS  Google Scholar 

  27. V. A. Svetlichnyi, A. V. Shabalina, I. N. Lapin, et al., in Metal Oxide Nanoparticle Preparation by Pulsed Laser Ablation of Metallic Targets in Liquid (InTech, Rijeka, 2016). https://doi.org/10.5772/65430.

  28. M. Ullmann, S. K. Friedlander, and A. Schmidt-Ott, J. Nanopart. Res. 4, 499 (2002). https://doi.org/10.1023/A:1022840924336

    Article  CAS  Google Scholar 

  29. A. Queralto, A. del Pino, C. Logofatu, et al., Ceram. Int. 44, 20409 (2018). https://doi.org/10.1016/j.ceramint.2018.08.034

    Article  CAS  Google Scholar 

  30. V. A. Svetlichnyi, A. V. Shabalina, I. N. Lapin, et al., Appl. Surf. Sci. 462, 226 (2018). https://doi.org/10.1016/j.apsusc.2018.08.116

    Article  CAS  Google Scholar 

  31. B. Yu, A. Gele, and L. Wang, Int. J. Biol. Macromol. 118, 478 (2018). https://doi.org/10.1016/j.ijbiomac.2018.06.088

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to M.V. Volochaev from the Kirensky Institute of Physics (Federal Research Center, Krasnoyarsk Scientific Center, Siberian Branch of the Russian Academy of Sciences) for obtaining the TEM images of the samples prepared.

Funding

The work was fulfilled in the frame of the governmental assignment of the Ministry of Science and Education of Russia (project no. 3.9604.2017/8.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shabalina.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabalina, A.V., Sharko, D.O., Korsakova, D.R. et al. Iron Oxide Nanopowders Obtained via Pulsed Laser Ablation, for Supercapacitors. Russ. J. Inorg. Chem. 65, 271–278 (2020). https://doi.org/10.1134/S003602362002014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602362002014X

Keywords:

Navigation