Skip to main content
Log in

Quantum Chemical Relationship between Generalized Anomeric Effect and Thermodynamic Parameters in M2Cl2 (M = O, S, Se)

  • THEORETICAL INORGANIC CHEMISTRY
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Compounds such as dioxygen dichloride (1), disulfur dichloride (2), and diselenium dichloride (3) have been investigated using LC-BLYP, LC-ωPBE and B3LYP with aug-cc-pVmZ basis set (m: 2, 3, 4). Natural Bond Orbital (NBO) analysis has been performed on skew (C2), trans (C2h) and cis (C2v) conformations. The results indicated that the resonance energy associated with electron delocalization in molecules 1 to 3 in C2 conformation is 13.75, 22.76, and 17.99 kcal/mol, respectively, and is directly related to the off-diagonal elements (Fij). In addition, the Generalized Anomeric Effect (GAE) associated with electron delocalization is increased from molecules 1 to 2 and decreased from molecules 2 to 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. L. Horny, M. Quack, H. F. Schaefer et al., Mol. Phys. 114, 1135 (2016). https://doi.org/10.1080/00268976.2016.1143984

    Article  CAS  Google Scholar 

  2. K. L. Hume, K. D. Bayes, and S. P. Sander., J. Phys. Chem. A 119, 4473 (2015). https://doi.org/10.1021/jp510100n

    Article  CAS  PubMed  Google Scholar 

  3. F. D. Pope, J. C. Hansen, K. D. Bayes, et al. J. Phys. Chem. A 111, 4322 (2007). https://doi.org/10.1021/jp067660w

    Article  CAS  PubMed  Google Scholar 

  4. W. T. Huang, A. F. Chen, I. C. Chen, et al., Phys. Chem. Chem. Phys. 13, 8195 (2011). https://doi.org/10.1039/C0CP02453H

    Article  CAS  PubMed  Google Scholar 

  5. M. El-Hamdi, J. Poater, F. M. Bickelhaupt, et al., Inorg. Chem. 52, 2458 (2013). https://doi.org/10.1021/ic3023503

    Article  CAS  PubMed  Google Scholar 

  6. Z. T. Dahghani, S. Ota, A. Mizoguchi, et al., J. Phys. Chem. A 117, 10041 (2013). https://doi.org/10.1021/jp400632g

    Article  CAS  Google Scholar 

  7. J. M. Rautiainen, T. Way, G. Schatte, J. Passmore, et al., Inorg. Chem. 44, 1904 (2005). https://doi.org/10.1021/ic048310w

    Article  CAS  PubMed  Google Scholar 

  8. A. Taniolo, M. Persico, D. Pitea., J. Phys. Chem. A 112, 2790 (2000). https://doi.org/10.1063/1.480853

    Article  Google Scholar 

  9. B. Jin, I. C. Chen, W. T. Huang, et al., J. Phys. Chem. A 114, 4791 (2010). https://doi.org/10.1021/jp909374k

    Article  CAS  PubMed  Google Scholar 

  10. L. Horny, M. Quack, H. F. Schaefer, et al., Mol. Phys. 114, 1135 (2016). https://doi.org/10.1080/00268976.2016.1143984

    Article  CAS  Google Scholar 

  11. S. Meloni, A. Pieretti, L. Bencivenni, et al., Comput. Mater. Sci. 20, 407 (2001). https://doi.org/10.1016/S0927-0256(00)00200-7

    Article  CAS  Google Scholar 

  12. R. Broske, and F. Zabel, J. Phys. Chem. A 110, 3280 (2006). https://doi.org/10.1021/jp0550053

    Article  CAS  PubMed  Google Scholar 

  13. M. H. Matus, M. T. Nguyen, D. A. Dixon, et al., J. Phys. Chem. A 112, 9623 (2008). https://doi.org/10.1021/jp806220r

    Article  CAS  PubMed  Google Scholar 

  14. H. Shimakura, Y. Kawakita, S. Ohmura, et al., Mol. Phys. 114, 297 (2016). https://doi.org/10.1080/00268976.2015.1100345

    Article  CAS  Google Scholar 

  15. A. Chiba, Y. Kawakita, Y. Ohmasa, et al., Anal. Sci. 17, i1089 (2001). https://doi.org/10.14891/analscisp.17icas.0.i1089.0

    Article  Google Scholar 

  16. A. Koga, S. Ohmura, and F. Shimojo, J. Phys. Soc. Jpn. 78, 072601 (2009). https://doi.org/10.1143/jpsj.78.074601

    Article  Google Scholar 

  17. E. R. Alonso, I. Pena, C. Cabezas, et al., J. Phys. Chem. Lett. 7, 845 (2016). https://doi.org/10.1021/acs.jpclett.6b00028

    Article  CAS  PubMed  Google Scholar 

  18. E. Juaristi and R. Notario, J. Org. Chem. 80, 2879 (2015). https://doi.org/10.1021/jo5029425

    Article  CAS  PubMed  Google Scholar 

  19. A. Usta, M. Zengin, and M. Birey., Rom. J. Phys. 56, 1162 (2011).

    CAS  Google Scholar 

  20. T. J. Lee, C. M. Rohlfing, and J. E. Rice., J. Chem. Phys. 97, 6593 (1992). https://doi.org/10.1063/1.463663

    Article  CAS  Google Scholar 

  21. A. C. Coronel, L. E. Fernandez, and E. L. Varetti, Z. Allg. Chem. 642, 551 (2016). https://doi.org/10.1002/zaac.201600056

    Article  CAS  Google Scholar 

  22. S. G. Frankiss, J. Mol. Struct. 2, 271 (1968). https://doi.org/10.1016/0022-2860(68)80019-5

    Article  CAS  Google Scholar 

  23. R. Ghiasi, M. Godarzi, and A. Moshtkob, Russ. J. Inorg. Chem. 63, 800 (2018). https://doi.org/10.1134/S0036023618060104

    Article  CAS  Google Scholar 

  24. M. Iranpour, R. Fazaeli, M. S. Sadjadi, et al., Russ. J. Inorg. Chem. 63, 1079 (2018). https://doi.org/10.1134/S0036023618080090

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Fazaeli.

Ethics declarations

The authors declare that they have no conflict of interest.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhayeri, Z., Fazaeli, R. Quantum Chemical Relationship between Generalized Anomeric Effect and Thermodynamic Parameters in M2Cl2 (M = O, S, Se). Russ. J. Inorg. Chem. 64, 1819–1824 (2019). https://doi.org/10.1134/S0036023619140146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023619140146

Keywords:

Navigation