Advertisement

Russian Journal of Inorganic Chemistry

, Volume 64, Issue 10, pp 1191–1198 | Cite as

Production of Gadolinium Iron Garnet by Anion Resin Exchange Precipitation

  • S. V. SaikovaEmail author
  • E. A. Kirshneva
  • M. V. Panteleeva
  • E. V. Pikurova
  • N. P. Evsevskaya
SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS

Abstract—

A new method to synthesize nanosized powders of gadolinium iron garnet was proposed, in which the precipitant is a strong base anion-exchange resin. The effect of the type of the resin (A400 or AV-17-8), the type of its counterion (OH or CO3), and the temperature and duration of the process on the stoichiometry of the formed product and its yield was studied. The time–temperature parameters of gadolinium iron garnet crystallization were determined. The obtained products were investigated by X-ray powder diffraction analysis, thermal analysis, IR spectroscopy, and electron microscopy. Procedures were developed to produce precursors of stoichiometric composition, which, after annealing at 1000°C, form pure phase Gd3Fe5O12 with a particle size of 20–40 nm according to transmission electron microscopy.

Keywords:

nanopowders anion-exchange resin synthesis ferrite 

Notes

ACKNOWLEDGMENTS

This work was performed using equipment of the Centers for Shared Use of Scientific Equipment at the Institute of Chemistry and Chemical Engineering, Krasnoyarsk, Russia, and the Siberian Federal University, Krasnoyarsk, Russia.

REFERENCES

  1. 1.
    G. I. Zhuravlev, Chemistry and Technology of Ferrites (Khimiya, Leningrad, 1970) [in Russian].Google Scholar
  2. 2.
    A. S. Lagutin, G. E. Fedorov, J. Vanacken, et al., J. Magn. Magn. Mater. 195, 97 (1999).CrossRefGoogle Scholar
  3. 3.
    A. A. Samokhvalov, Magnetic Rare-Earth Metal Semiconductors (Nauka, Leningrad, 1977) [in Russian].Google Scholar
  4. 4.
    E. J. J. Mallmann, A. S. B. Sombra, J. C. Goes, et al., Solid State Phenom. 202, 65 (2013).  https://doi.org/10.4028/www.scientific.net/SSP.202.65 CrossRefGoogle Scholar
  5. 5.
    T. Ramesh, R. S. Shinde, and R. Murthy, J. Magn. Magn. Mater. 324, 3668 (2012).  https://doi.org/10.1016/j.jmmm.2012.05.029 CrossRefGoogle Scholar
  6. 6.
    R. H. Britt, Materials for Room Temperature Magnetic Refrigeration (Tech. Univ. Denmark, Roskilde, Denmark, 2010).Google Scholar
  7. 7.
    B. F. Yu, Q. Gao, B. Zhang, et al., Int. J. Refrig. 26, 622 (2003).  https://doi.org/10.1016/S0140-7007(03)00048-3 CrossRefGoogle Scholar
  8. 8.
    S. C. Zanatta, L. F. Cotica, Jr. A. Paesano, et al., J. Am. Ceram. Soc. 88, 3316 (2005).  https://doi.org/10.1111/j.1551-2916.2005.00598.x CrossRefGoogle Scholar
  9. 9.
    S. C. Zanatta, F. F. Ivashita, K. L. Silva, et al., Hyperfine Interact. 224, 307 (2013).  https://doi.org/10.1007/s10751-013-0813-x CrossRefGoogle Scholar
  10. 10.
    F. N. Shafiee, R. S. Azis, I. Ismail, et al., Solid State Phenom. 268, 287 (2016).  https://doi.org/10.4028/www.scientific.net/SSP.268.287 CrossRefGoogle Scholar
  11. 11.
    O. Opuchovica, A. Kareivaa, K. Mazeikab, et al., J. Magn. Magn. Mater. 422, 425 (2017).  https://doi.org/10.1016/j.jmmm.2016.09.041 CrossRefGoogle Scholar
  12. 12.
    D. Nguyeta, N. P. Duong, and T. Satoh, J. Magn. Magn. Mater. 332, 180 (2013).  https://doi.org/10.1016/j.jmmm.2012.12.031 CrossRefGoogle Scholar
  13. 13.
    S. Gokul Raj, S. Nallamuthu, and R. Justin Joseyphus, Nanosci. Nanotechnol. Lett. 3, 463 (2011).  https://doi.org/10.1166/nnl.2011.1192 CrossRefGoogle Scholar
  14. 14.
    C. L. S. Silva, S. G. Marchetti, and A. da Costa Faro Júnior, Catal. Today 213, 127 (2013).CrossRefGoogle Scholar
  15. 15.
    S. Music, V. Ilakovac, and M. Ristic, J. Mater. Sci. 27, 1011 (1992).CrossRefGoogle Scholar
  16. 16.
    P. P. Fedorov, V. A. Maslov, V. A. Usachev, et al., Vestn. Mos. Gos. Tekh. Univ., 28 (2012).Google Scholar
  17. 17.
    G. L. Pashkov, S. V. Saikova, M. V. Panteleeva, et al., Glass Ceram. 73, 107 (2016).  https://doi.org/10.1007/s10717-0169836-5 CrossRefGoogle Scholar
  18. 18.
    S. V. Saikova, G. L. Pashkov, and M. V. Panteleeva, Reactive Ion-Exchange Processes of Recovery of Nonferrous Metals and Synthesis of Dispersed Materials: A Monograph (Sib. Fed. Univ., Krasnoyarsk, 2018) [in Russian].Google Scholar
  19. 19.
    A. I. Vulikh, Ion-Exchange Synthesis (Khimiya, Moscow, 1973) [in Russian].Google Scholar
  20. 20.
    S. V. Saikova, M. V. Panteleeva, R. B. Nikolaeva, et al., Russ. J. Appl. Chem. 75, 1787 (2002).CrossRefGoogle Scholar
  21. 21.
    S. A. Shapiro, Analytical Chemistry (Vysshaya shkola, Moscow, 1973) [in Russian].Google Scholar
  22. 22.
    G. L. Pashkov, S. V. Saikova, and M. V. Panteleeva, Theor. Found. Chem. Eng. 50, 575 (2016).  https://doi.org/10.1134/S0040579516040254 CrossRefGoogle Scholar
  23. 23.
    G. L. Pashkov, S. V. Saikova, E. V. Linok, et al., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., Ser. Khim., No. 11, 45 (2015).Google Scholar
  24. 24.
    G. L. Pashkov, S. V. Saikova, M. V. Panteleeva, et al., Theor. Found. Chem. Eng. 48, 671 (2014).Google Scholar
  25. 25.
    I. V. Lisnevskaya, I. A. Bobrova, and T. G. Lupeiko, Russ. J. Inorg. Chem. 60, 437 (2015).  https://doi.org/10.1134/S0036023615040130 CrossRefGoogle Scholar
  26. 26.
    I. V. Lisnevskaya, I. A. Bobrova, and T. G. Lupeiko, J. Magn. Magn. Mater. 397, 86 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. V. Saikova
    • 1
    • 2
    Email author
  • E. A. Kirshneva
    • 2
  • M. V. Panteleeva
    • 1
  • E. V. Pikurova
    • 1
  • N. P. Evsevskaya
    • 1
  1. 1.Institute of Chemistry and Chemical Engineering, Krasnoyarsk Scientific Center (Federal Research Center), Siberian Branch, Russian Academy of Sciences, AkademgorodokKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations