Advertisement

Russian Journal of Inorganic Chemistry

, Volume 64, Issue 10, pp 1309–1316 | Cite as

Liquid-Phase Synthesis of Silver Sulfide Nanoparticles in Supersaturated Aqueous Solutions

  • S. I. SadovnikovEmail author
INORGANIC MATERIALS AND NANOMATERIALS
  • 1 Downloads

Abstract

Silver sulfide powders and colloidal solutions were synthesized by chemical deposition from aqueous solutions of silver nitrate and sodium sulfide in the presence of sodium citrate as a stabilizing agent. X‑ray diffraction, electronic microscopy, the Brunauer–Emmett–Teller method, and dynamic light scattering were used to determine nanoparticle sizes in the deposited powders and colloidal solutions. The varying reagent concentrations in the reaction mixture provided nanopowders with average particle sizes ranging from ~1000 to ~40–50 nm. Silver sulfide nanoparticles in colloidal solutions have sizes of 15–20 nm. A qualitative correlation is found between the silver sulfide particle size and the supersaturation of the solutions used in the synthesis.

Keywords:

chemical deposition supersaturation nanoparticles silver sulfide 

Notes

ACKNOWLEDGMENTS

The author is grateful to Professor V.F. Markov for fruitful discussion.

FUNDING

The study was financially supported by the Russian Science Foundation (project No. 19-73-20012) in the Institute of Solid-State Chemistry of the Russian Academy of Sciences, Ural Branch.

REFERENCES

  1. 1.
    H.-E. Schaefer, Nanoscience. The Science of the Small in Physics, Engineering, Chemistry, Biology and Medicine (Springer, Heidelberg/Dordrecht/New York, 2010).  https://doi.org/10.1007/978-3-642-10559-3 CrossRefGoogle Scholar
  2. 2.
    A. Tang, Yu. Wang, H. Ye, et al., Nanotecnology 24, 355602 (2013).CrossRefGoogle Scholar
  3. 3.
    S. I. Sadovnikov and A. I. Gusev, J. Mater. Chem. A 5, 17676 (2017).CrossRefGoogle Scholar
  4. 4.
    S. I. Sadovnikov, A. A. Rempel, and A. I. Gusev, Russ. Chem. Rev. 87, 303 (2018).  https://doi.org/10.1070/RCR4803 CrossRefGoogle Scholar
  5. 5.
    Y. Zhang, Y. Liu, C. Li, et al., J. Phys. Chem. C 118, 4918 (2014).  https://doi.org/10.1021/jp501266d CrossRefGoogle Scholar
  6. 6.
    S. Goel, F. Chen, and W. Cai, Small 10, 631 (2013).  https://doi.org/10.1002/smll.201301174 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    X. Shi, S. Zheng, W. Gao, et al., J. Nanopart. Res. 16 (12), 2741 (2014).  https://doi.org/10.1007/s11051-014-2741-3 CrossRefGoogle Scholar
  8. 8.
    S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, Russ. Chem. Rev. 85, 731 (2016).  https://doi.org/10.1070/RCR4594 CrossRefGoogle Scholar
  9. 9.
    S. I. Sadovnikov and A. I. Gusev, J. Alloys Compd. 610, 196 (2014). http://dx.doi.org/10.1016/j.jallcom.2014.04.220Google Scholar
  10. 10.
    H. Y. Hoang, R. M. Akhmadullin, F. Yu. Akhmadullina, et al., Russ. J. Inorg. Chem. 63, 256 (2018).  https://doi.org/10.1134/S0036023618020109 CrossRefGoogle Scholar
  11. 11.
    P. Junod, Helv. Phys. Acta 32, 567 (1959).Google Scholar
  12. 12.
    R. Chen, N. T. Nuhfer, L. Moussa, et al., Nanotecnology 19, 455604 (2008).  https://doi.org/10.1088/0957-4484/19/45/455604 CrossRefGoogle Scholar
  13. 13.
    A. A. Rempel, Russ. Chem. Rev. 76, 435 (2007).  https://doi.org/10.1070/RC2007v076n05ABEH003674 CrossRefGoogle Scholar
  14. 14.
    V. F. Markov, L. N. Maskaeva, and P. N. Ivanov, Hydrochemical Deposition of Metal Sulfide Films: Modeling and Experiment (Izd–vo UrO RAN, Yekaterinburg, 2006) [in Russian]. ISBN 5-7691-1766-4.Google Scholar
  15. 15.
    S. G. Kwon and T. Hyeon, Acc. Chem. Res. 41, 1696 (2008).CrossRefGoogle Scholar
  16. 16.
    G. P. Panasyuk, I. V. Kozerozhets, E. A. Semenov, et al., Russ. J. Inorg. Chem. 63, 1303 (2018).  https://doi.org/10.1134/S0036023618100157 CrossRefGoogle Scholar
  17. 17.
    R. Chen, N. T. Nuhfer, L. Moussa, et al., Nanotecnology 19, 455604 (2008).  https://doi.org/10.1088/0957-4484/19/45/455604 CrossRefGoogle Scholar
  18. 18.
    S. Xiong, B. Xi, K. Zhang, et al., Sci. Rep. 3, 2177 (2013).  https://doi.org/10.1038/srep02177 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    W. Zhang, L. Zhang, Z. Hui, et al., Solid. State Ionics 130, 111 (2000).  https://doi.org/10.1016/S0167-2738(00)00497-5 CrossRefGoogle Scholar
  20. 20.
    X’Pert HighScore Plus. Version 2.2e (2.2.5) (PANalytical, Almedo, the Netherlands).Google Scholar
  21. 21.
    G. K. Williamson and W. H. Hall, Act. Metal. 1, 22 (1953).CrossRefGoogle Scholar
  22. 22.
    A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies (Fizmatlit, Moscow, 2009) [in Russian]. ISBN 978-5-9221-0582-8.Google Scholar
  23. 23.
    S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, Superlatt. Microstr. 83, 35 (2015). doi.org/ https://doi.org/10.1016/j.spmi.2015.03.024 CrossRefGoogle Scholar
  24. 24.
    S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, Phys. Chem. Chem. Phys. 17, 12466 (2015).  https://doi.org/10.1039/C5CP00650C CrossRefPubMedGoogle Scholar
  25. 25.
    Yu. Yu. Lur’e, The Analytical Chemistry Handbook (Khimiya, Moscow, 1967) [in Russian].Google Scholar
  26. 26.
    P. Patnaik, Dean’s Analytical Chemistry Handbook (McGraw-Hill, New York, 2004). ISBN: 978-0071410601Google Scholar
  27. 27.
    Activity Coefficients in Electrolyte Solutions, Ed. by K. S. Pitzer (CRC, Boca Raton, 1991), p. 75.Google Scholar
  28. 28.
    www.novedu.ru/calc/fm-s.htm.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Solid-State Chemistry, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations