Advertisement

Russian Journal of Inorganic Chemistry

, Volume 64, Issue 10, pp 1304–1308 | Cite as

Gel Combustion Synthesis of Li(Ni,Mn,Co,Fe)O2 Solid Solutions

  • G. D. Nipan
  • M. N. SmirnovaEmail author
  • M. A. Kop’eva
  • G. E. Nikiforova
INORGANIC MATERIALS AND NANOMATERIALS

Abstract

An option for the homogeneous substitution of iron for cobalt, nickel, and manganese in solid solutions with a α-NaFeO2-type layered structure formed in the system Li–Ni–Mn–Co–O was studied. Two sets of samples, namely, Li(Ni0.33Mn0.33Co0.33)1 –xFexO2 and Li(Ni0.60Mn0.20Co0.20)1 –xFexO2 (0 ≤ х ≤ 1), were prepared by combusting sucrose- or starch-based gels and characterized by X-ray powder diffraction. It is the first time that single-phase Li(Ni,Mn,Co,Fe)O2 samples containing 15–20% Fe of the total amount of cations were prepared. The position of a metastable area of Li(Ni,Mn,Co,Fe)O2 solid solutions with respect to the section LiNiO2–LiMn0.5Co0.5O2–LiFeO2 was determined in the frame of the isobaric–isothermal tetrahedron LiNiO2–LiMnO2–LiCoO2–LiFeO2.

Keywords:

gel combustion diagram of a quasi-quaternary system 

Notes

FUNDING

The study was performed in the frame of the Governmental assignment to the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, in the field of fundamental research.

REFERENCES

  1. 1.
    Y. Xie, Y. Jin, and L. Xiang, Crystals 7 (7), 1 (2017).  https://doi.org/10.3390/cryst7070221 CrossRefGoogle Scholar
  2. 2.
    C. R. Brown, E. McCalla, C. Watson, et al., ASC Comb. Sci. 17, 381 (2015).  https://doi.org/10.1021/acscombsci.5b00048 CrossRefGoogle Scholar
  3. 3.
    C. D. Nipan and A. I. Klyndyuk, Inorg. Mater. 55, 135 (2019).  https://doi.org/10.1134/S0020168519020080 CrossRefGoogle Scholar
  4. 4.
    M. Hirayama, H. Tomita, K. Kubota, et al., Mater. Res. Bull. 47, 79 (2012).  https://doi.org/10.1016/j.materresbull.2011.09.024 CrossRefGoogle Scholar
  5. 5.
    T. Ohzuku and Y. Makimura, Chem. Lett. 30, 642 (2001).  https://doi.org/10.1246/cl.2001.642 CrossRefGoogle Scholar
  6. 6.
    Y. S. Meng, Y. W. Wu, B. J. Hwang, et al., J. Electrochem. Soc. 151, A1134 (2004).  https://doi.org/10.1149/1.1765032 CrossRefGoogle Scholar
  7. 7.
    Y. Idemoto and T. Matsui, Electrochemistry (Japan) 75, 791 (2007).CrossRefGoogle Scholar
  8. 8.
    J. Wilcox, S. Patoux, and M. Doeff, J. Electrochem. Soc. 156, A192 (2009).  https://doi.org/10.1149/1.3056109 CrossRefGoogle Scholar
  9. 9.
    J. Mohd Hilmi, Nor Sabirin Mohamed, and R. Yahya, Adv. Mater. Res. 501, 56 (2012). https://doi.org/201210.4028/www.scientific.net/AMR.501.56Google Scholar
  10. 10.
    J.-T. Son and E. Cairns, Korean J. Chem. Eng. 24, 888 (2007).  https://doi.org/10.1007/s11814-007-0060-4 CrossRefGoogle Scholar
  11. 11.
    W. El Mofid, Dissertation (Techn. Univ. Ilmenau, 2016). urn:nbn:de:gbv:ilm1-2016000524.Google Scholar
  12. 12.
    J. D. Wilcox, E. E. Rodrigues, and M. M. Doeff, J. Electrochem. Soc. 156, A1011 (2009).  https://doi.org/10.1149/1.3237100 CrossRefGoogle Scholar
  13. 13.
    M. N. Smirnova, M. A. Kop’eva, E. N. Beresnev, et al., Russ. J. Inorg. Chem. 63, 1257 (2018).  https://doi.org/10.1134/S0036023618100182 CrossRefGoogle Scholar
  14. 14.
    K. Ding, J. Zhao, J. Zhou, et al., Mater. Chem. Phys. 177, 31 (2016).  https://doi.org/10.1016/j.matchemphys.2016.03.030 CrossRefGoogle Scholar
  15. 15.
    H -J. Noh, S. Youn, C. S. Youn, et al., J. Power Sources 233, 121 (2013).  https://doi.org/10.1016/j.jpowsour.2013.01.063 CrossRefGoogle Scholar
  16. 16.
    S.-W. Lee, H. Kim, M.-S. Kim, et al., J. Power Sources 315, 261 (2016).  https://doi.org/10.1016/j.jpowsour.2016.03.020 CrossRefGoogle Scholar
  17. 17.
    E. McCalla, A. W. Rowe, R. Shunmugasundaram, et al., Chem. Mater. 25, 989 (2013).  https://doi.org/10.1021/cm304002b CrossRefGoogle Scholar
  18. 18.
    G. Prado, E. Suard, L. Fournes, et al., J. Mater. Chem. 10, 2553 (2000).  https://doi.org/10.1039/B002975K CrossRefGoogle Scholar
  19. 19.
    W. H. Kan, A. Huq, and A. Mathiram, Chem. Mater. 28, 1832 (2016).  https://doi.org/10.1021/acs.chemmater.5b04994 CrossRefGoogle Scholar
  20. 20.
    Y. Wei, J. Zheng, S. Cui, et al., J. Am. Chem. Soc. 137 (26), 8364 (2015).  https://doi.org/10.1021/jacs.5b04040 CrossRefPubMedGoogle Scholar
  21. 21.
    J. Zheng, T. Liu, Z. Hu, et al., J. Am. Chem. Soc. 138, 13326 (2016).  https://doi.org/10.1021/jacs.6b07771 CrossRefPubMedGoogle Scholar
  22. 22.
    L. Xu, F. Zhou, B. Liu, et al., Int. J. Electrochem. 2018, 1 (2018).  https://doi.org/10.1155/2018/6930386 CrossRefGoogle Scholar
  23. 23.
    T.-F. Yi, X. Han, S.-Y. Yang, et al., Sci. Chin. Mater. 59, 618 (2016).  https://doi.org/10.1007/s40843-016-5097-7 CrossRefGoogle Scholar
  24. 24.
    K. C. Kam and M. M. Doeff, J. Mater. Chem. 21, 9991 (2011).  https://doi.org/10.1039/c0jm04193a CrossRefGoogle Scholar
  25. 25.
    Y. Lu, M. Pang, S. Shi, et al., Sci. Reports 8, 2981 (2018).  https://doi.org/10.1038/s41598-018-21345-6 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. D. Nipan
    • 1
  • M. N. Smirnova
    • 1
    Email author
  • M. A. Kop’eva
    • 1
  • G. E. Nikiforova
    • 1
  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations