Advertisement

Russian Journal of Inorganic Chemistry

, Volume 64, Issue 10, pp 1249–1256 | Cite as

Exploring the Optoelectronic and Charge Transfer Nature of Ferrocene Derivatives: A First-Principles Approach

  • Ahmad IrfanEmail author
THEORETICAL INORGANIC CHEMISTRY
  • 1 Downloads

Abstract—

Optoelectronic and charge transfer properties of three ferrocene derivatives 4-(4-methoxybenzyl)-1-(1-ferrocenylethyl)thio-semicarbazone (1), 4-(2-fluorobenzyl)-1-(1-ferrocenylethyl)thiosemicarbazone (2) and 4-(3,4-dimethylphenyl)-1-(1-ferrocenylethyl)thiosemicarbazone (3) were probed by first-principles study. Density functional theory (DFT) was carried out to elucidate the structural and electronic properties. The B3LYP/6-31G**(LANL2DZ) level was adopted to shed light on the structural parameters and frontier molecular orbitals. The computed geometrical parameters are rationale to the X-ray crystallographic data. The intra-molecular charge transfer from ligand to metal was perceived in ferrocene derivatives. The absorption and emission spectra were computed employing time domain TD-B3LYP/6-31G** (LANL2DZ) level. The hole and electron transfer integrals were estimated to figure out the charge transfer nature in particular ferrocene derivatives. The larger electron transfer integral values are anticipating that these studied Compounds 1–3 might be better electron transfer materials. Moreover, the effect of electron activating groups (–CH3 and –OCH3) and electron deactivating group (-F) was studied on the transfer integrals, structural and electro-optical properties.

Keywords:

quantum chemical computation ferrocene derivatives density functional theory electronic properties optical properties transfer integral 

Notes

FUNDING

This work was supported by the Deanship of Scientific Research at King Khalid University, grant no. R.G.P.1/18/40.

Supplementary material

11502_2019_2062_MOESM1_ESM.pdf (830 kb)
11502_2019_2062_MOESM1_ESM.pdf

REFERENCES

  1. 1.
    H. Nishihara, Handbook of Organic Conductive Molecules and Polymers (Wiley, 1997), Chapter 19.Google Scholar
  2. 2.
    E. N. Ovchenkova, N. G. Bichan, and T. N. Lomova, Russ. J. Inorg. Chem. 63, 391 (2018).  https://doi.org/10.1134/s0036023618030178 CrossRefGoogle Scholar
  3. 3.
    J. J. Bishop, A. Davison, M. L. Katcher, et al., J. Organomet. Chem. 27, 241 (1971).  https://doi.org/10.1016/S0022-328X(00)80571-9 CrossRefGoogle Scholar
  4. 4.
    N. Nerngchamnong, L. Yuan, D.-C. Qi, et al., Nat. Nanotech. 8, 113 (2013).  https://doi.org/10.1038/nnano.2012.238 CrossRefGoogle Scholar
  5. 5.
    M. S. Inkpen, S. Scheerer, M. Linseis, et al., Nat. Chem. 8, 825 (2016).  https://doi.org/10.1038/nchem.2553 CrossRefPubMedGoogle Scholar
  6. 6.
    D. Astruc, Europ. J Inorg. Chem. 2017, 6 (2017).  https://doi.org/10.1002/ejic.201600983 CrossRefGoogle Scholar
  7. 7.
    F. A. Larik, A. Saeed, T. A. Fattah, et al., App. Organomet. Chem. 31, e3664 (2017). https://doi.org/10.1002/aoc.3664 CrossRefGoogle Scholar
  8. 8.
    A. Tohni, Ferrocenes: Homogeneous Catalysis/Organic Synthesis/Materials Science (Wiley-VCH, Weinheim, 1995).Google Scholar
  9. 9.
    S. Radhakrishnan and S. Paul, Sens. Actuator B: Chem. 125, 60 (2007).  https://doi.org/10.1016/j.snb.2007.01.038 CrossRefGoogle Scholar
  10. 10.
    C. Morari, I. Rungger, A. R. Rocha, et al., ACS Nano 3, 4137 (2009).  https://doi.org/10.1021/nn9012059 CrossRefPubMedGoogle Scholar
  11. 11.
    R. F. Shago, J. C. Swarts, E. Kreft, et al., Anticancer Res. 27, 3431 (2007).PubMedGoogle Scholar
  12. 12.
    Y. Zhu, O. Clot, M. O. Wolf, et al., J. Am. Chem. Soc. 120, 1812 (1998).  https://doi.org/10.1021/ja9732486 CrossRefGoogle Scholar
  13. 13.
    A. C. Templeton, W. P. Wuelfing and R. W. Murray, Acc. Chem. Res. 33, 27 (2000).  https://doi.org/10.1021/ar9602664 CrossRefPubMedGoogle Scholar
  14. 14.
    V. Getautis, M. Daskeviciene, T. Malinauskas, et al., Monatsh. Chem. 138, 277 (2007).CrossRefGoogle Scholar
  15. 15.
    R. D. A. Hudson, J. Organomet. Chem. 637639, 47 (2001).  https://doi.org/10.1016/S0022-328X(01)01142-1 CrossRefGoogle Scholar
  16. 16.
    J. C. Medina, I. Gay, Z. Chen, et al., J. Am. Chem. Soc. 113, 365 (1991).  https://doi.org/10.1021/ja00001a056 CrossRefGoogle Scholar
  17. 17.
    A. Houlton, N. Jasim, R. M. G. Roberts, et al., Dalton Trans., 2235 (1992).  https://doi.org/10.1039/dt9920002235
  18. 18.
    M. L. H. Green, J. Qin and D. O’Hare, J. Organomet. Chem. 358, 375 (1988).  https://doi.org/10.1016/0022-328X(88)87091-8 CrossRefGoogle Scholar
  19. 19.
    H. Imahori, H. Norieda, H. Yamada, et al., J. Am. Chem. Soc. 123, 100 (2001).  https://doi.org/10.1021/ja002154k CrossRefPubMedGoogle Scholar
  20. 20.
    Y. Zhu and M. O. Wolf, Chem. Mater. 11, 2995 (1999).  https://doi.org/10.1021/cm990391k CrossRefGoogle Scholar
  21. 21.
    S. Barlow and D. O’Hare, Chem. Rev. 97, 637 (1997).  https://doi.org/10.1021/cr960083v CrossRefPubMedGoogle Scholar
  22. 22.
    H. Tan, H. Yao, Y. Song, et al., Dyes Pigm. 146, 210 (2017).  https://doi.org/10.1016/j.dyepig.2017.06.066 CrossRefGoogle Scholar
  23. 23.
    P. Singla, N. Van Steerteghem, N. Kaur, et al., J. Mater. Chem. C 5, 697 (2017).  https://doi.org/10.1039/c6tc03876j CrossRefGoogle Scholar
  24. 24.
    K. Kanthasamy, M. Ring, D. Nettelroth, et al., Small 12, 4849 (2016). doi https://doi.org/10.1002/smll.201601051 CrossRefPubMedGoogle Scholar
  25. 25.
    Y.-W. Chang, M.-J. Huang, C.-C. Lai, et al., Chem. Commun. 52, 14294 (2016).  https://doi.org/10.1039/c6cc07999g CrossRefGoogle Scholar
  26. 26.
    H. Nishihara and M. Murata, J. Inorg. Organomet. Polym. 15, 147 (2005).  https://doi.org/10.1007/s10904-004-2909-x CrossRefGoogle Scholar
  27. 27.
    A. Takai, D. Sakamaki, S. Seki, et al., Chem. Eur. J. 22, 7385 (2016). doi https://doi.org/10.1002/chem.201600196 CrossRefPubMedGoogle Scholar
  28. 28.
    J. E. J. C. Graúdo, N. L. Speziali, A. Abras, et al., Polyhedron 18, 2483 (1999).  https://doi.org/10.1016/S0277-5387(99)00123-0 CrossRefGoogle Scholar
  29. 29.
    A. Irfan, A. G. Al-Sehemi, S. Muhammad, et al., J. Saudi. Chem. Soc. 20, 680 (2016).  https://doi.org/10.1016/j.jscs.2014.12.009 CrossRefGoogle Scholar
  30. 30.
    A. R. Chaudhry, R. Ahmed, A. Irfan, et al., J. Mol. Model. 21, 199 (2015).  https://doi.org/10.1007/s00894-015-2743-9 CrossRefPubMedGoogle Scholar
  31. 31.
    A. Irfan, S. Muhammad, A. G. Al-Sehemi, et al., Int. J. Electrochem. Sci 10, 3600 (2015).Google Scholar
  32. 32.
    A. Irfan, R. Cui, J. Zhang, et al., Austr. J. Chem. 63, 1283 (2010).CrossRefGoogle Scholar
  33. 33.
    A. Irfan, A. R. Chaudhry, S. Muhammad, et al., Optik 179, 526 (2019).  https://doi.org/10.1016/j.ijleo.2018.10.204 CrossRefGoogle Scholar
  34. 34.
    A. Irfan, A. R. Chaudhary, S. Muhammad, et al., Results Phys. 11, 599 (2018).  https://doi.org/10.1016/j.rinp.2018.09.052 CrossRefGoogle Scholar
  35. 35.
    R. Chaudhry Aijaz, S. Muhammad, A. Irfan, et al., Z. Naturforsch. A, 1037 (2018).Google Scholar
  36. 36.
    A. M. Orendt, J. C. Facelli, Y. J. Jiang, et al., J. Phys. Chem. A 102, 7692 (1998).  https://doi.org/10.1021/jp981079l CrossRefGoogle Scholar
  37. 37.
    M. J. Mayor-López and J. Weber, Chem. Phys. Lett. 281, 226 (1997).  https://doi.org/10.1016/S0009-2614(97)01214-1 CrossRefGoogle Scholar
  38. 38.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).CrossRefGoogle Scholar
  39. 39.
    W. Kohn, A. D. Becke and R. G. Parr, J. Phys. Chem. 100, 12974 (1996).  https://doi.org/10.1021/jp960669l CrossRefGoogle Scholar
  40. 40.
    C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 37, 785 (1988).CrossRefGoogle Scholar
  41. 41.
    S. Coriani, A. Haaland, T. Helgaker, et al., Chem. Phys. Chem. 7, 245 (2006). doi https://doi.org/10.1002/cphc.200500339 CrossRefPubMedGoogle Scholar
  42. 42.
    P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 270 (1985).  https://doi.org/10.1063/1.448799 CrossRefGoogle Scholar
  43. 43.
    W. R. Wadt and P. J. Hay, J. Chem. Phys. 82, 284 (1985).  https://doi.org/10.1063/1.448800 CrossRefGoogle Scholar
  44. 44.
    P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 299 (1985).  https://doi.org/10.1063/1.448975 CrossRefGoogle Scholar
  45. 45.
    A. Irfan, A. R. Chaudhry, R. Jin, et al., Journal of the Taiwan Institute of Chemical Engineers 80, 239 (2017).  https://doi.org/10.1016/j.jtice.2017.07.003 CrossRefGoogle Scholar
  46. 46.
    A. Irfan and G. Abbas, Z. Naturforsch. A 73, 337 (2018).  https://doi.org/10.1515/zna-2017-0406 CrossRefGoogle Scholar
  47. 47.
    H. A. R. Aliabad and M. Chahkandi, Z. Anorg. Allg. Chem. 643, 420 (2017).  https://doi.org/10.1002/zaac.201600423 CrossRefGoogle Scholar
  48. 48.
    T. P. Gryaznova, S. A. Katsyuba, V. A. Milyukov, et al., J. Organomet. Chem. 695, 2586 (2010).  https://doi.org/10.1016/j.jorganchem.2010.08.031 CrossRefGoogle Scholar
  49. 49.
    F. Ding, S. Chen and H. Wang, Materials 3, 2668 (2010).CrossRefGoogle Scholar
  50. 50.
    M. M. Francl, W. J. Pietro, W. J. Hehre, et al., J. Chem. Phys. 77, 3654 (1982).  https://doi.org/10.1063/1.444267 CrossRefGoogle Scholar
  51. 51.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 16 rev. B.01 (Wallingford, CT, 2016).Google Scholar
  52. 52.
    M. Hussain, R. Jawaria, Z. Shafiq, et al., J. Organomet. Chem. 846, 121 (2017).  https://doi.org/10.1016/j.jorganchem.2017.05.005 CrossRefGoogle Scholar
  53. 53.
    R. A. Marcus, Rev. Mod. Phy. 65, 599 (1993).CrossRefGoogle Scholar
  54. 54.
    B. C. Lin, C. P. Cheng, Z.-Q. You, et al., J. Am. Chem. Soc. 127, 66 (2004).  https://doi.org/10.1021/ja045087t CrossRefGoogle Scholar
  55. 55.
    A. Troisi and G. Orlandi, Chem. Phys. Lett. 344, 509 (2001).  https://doi.org/10.1016/S0009-2614(01)00792-8 CrossRefGoogle Scholar
  56. 56.
    S. Yin, Y. Yi, Q. Li, et al., J. Phys. Chem. A 110, 7138 (2006).  https://doi.org/10.1021/jp057291o CrossRefPubMedGoogle Scholar
  57. 57.
    E. F. Valeev, V. Coropceanu, D. A. da Silva Filho, et al., J. Am. Chem. Soc. 128, 9882 (2006).  https://doi.org/10.1021/ja061827h CrossRefPubMedGoogle Scholar
  58. 58.
    Y. Xiaodi, L. Qikai and S. Zhigang, Nanotechnology 18, 424029 (2007).CrossRefGoogle Scholar
  59. 59.
    A. R. Chaudhry, R. Ahmed, A. Irfan, et al., Mater. Chem. Phys. 138, 468 (2013).  https://doi.org/10.1016/j.matchemphys.2012.11.075 CrossRefGoogle Scholar
  60. 60.
    J. Huang and M. Kertesz, Chem. Phys. Lett. 390, 110 (2004).  https://doi.org/10.1016/j.cplett.2004.03.141 CrossRefGoogle Scholar
  61. 61.
    A. Irfan, M. Assiri and A. G. Al-Sehemi, Org. Electron. 57, 211 (2018).  https://doi.org/10.1016/j.orgel.2018.03.022 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004AbhaSaudi Arabia

Personalised recommendations