Advertisement

Russian Journal of Inorganic Chemistry

, Volume 64, Issue 10, pp 1220–1228 | Cite as

Coordination Polymers of γ,γ'-Dipyridyl and Mononuclear Benzoates M(OOCPh)2[O(H)Me]4 (M = Ni, Co)

  • R. R. Datchuk
  • A. A. Grineva
  • M. A. Uvarova
  • I. A. Yakushev
  • Ya. V. Zubavichus
  • S. E. NefedovEmail author
COORDINATION COMPOUNDS
  • 11 Downloads

Abstract

The slow diffusion of a γ,γ′-dipyridyl adduct solution in methanol into a methanol solution of the adduct M[(OOCPh]2[O(H)Me]4 (1) at the reagent ratio 1 : 1 and room temperature was found to result in the 1D coordination polymers {dipyM(OOCPh)2[O(H)Me]2}n (M = Ni (2), green; Co (3), orange) and {(dipy)2Co2(µ-OOCPh)22-OOCPh)2 ⋅ MeOH}n (4), pink). Orange polymer 3 was the only product when the initial reagents were diluted three times, and their diffusion was performed at 5°C. Synthesized polymers 24 were studied by chemical and X-ray diffraction analyses and IR spectroscopy.

Keywords:

synthesis nickel and cobalt benzoates N-donor X-ray diffraction analysis 

Notes

FUNDING

This work was supported by the Russian Foundation for Basic Research (project no. 18-33-01161 (mol_a)) within the state task for the Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences in the field of fundamental researches.

REFERENCES

  1. 1.
    F. A. Cotton, G. Wilkinson, C. A. Murillo, et al., Advanced Inorganic Chemistry (Wiley, 1999).Google Scholar
  2. 2.
    R. C. Mehrotra and R. Bohra, Metal Carboxylates (Academic Press, London, 1983).Google Scholar
  3. 3.
    F. A. Cotton, C. Lin, and C. A. Murillo, Acc. Chem. Res. 34, 759 (2001).CrossRefGoogle Scholar
  4. 4.
    M. Mikuriya, D. Yoshioka, and M. Handa, Coord. Chem. Rev. 250, 2194 (2006).  https://doi.org/10.1016/j.ccr.2006.01.011 CrossRefGoogle Scholar
  5. 5.
    I. L. Eremenko, V. M. Novotortsev, A. A. Sidorov, et al., Ross. Khim. Zh. 48 (1), 49 (2004).Google Scholar
  6. 6.
    T. R. Cook, Y.-R. Zheng, and P. J. Stang, Chem. Rev. 113, 734 (2013).  https://doi.org/10.1021/cr3002824 CrossRefPubMedGoogle Scholar
  7. 7.
    N. Stock and S. Biswas, Chem. Rev. 112, 933 (2012).  https://doi.org/10.1021/cr200304e CrossRefPubMedGoogle Scholar
  8. 8.
    H. Furukawa, K. E. Cordova, M. O' Keeffe, et al., Science 341, 97 (2013).  https://doi.org/10.1126/science.1230444 CrossRefGoogle Scholar
  9. 9.
    V. Stavila, A. A. Talin, and M. D. Allendorf, Chem. Soc. Rev. 43, 5994 (2014).  https://doi.org/10.1039/C4CS00096J CrossRefPubMedGoogle Scholar
  10. 10.
    M. Uvarova, A. Sinelshchikova, M. Golubnichaya, et al., Cryst. Growth Design 14, 5976 (2014).  https://doi.org/10.1021/cg501157e CrossRefGoogle Scholar
  11. 11.
    A. Yu. Mitrofanov, Y. Rousseli, R. Guilard, et al., New J. Chem. 40, 5896 (2016).  https://doi.org/10.1039/C5NJ03572D CrossRefGoogle Scholar
  12. 12.
    CCDC CSD ver.5.39 (updates Aug. 2018).Google Scholar
  13. 13.
    A. A. Ageshina, M. A. Uvarova, and S. E. Nefedov, Russ. J. Inorg. Chem. 60, 1085 (2015).  https://doi.org/10.1134/S0036023615090028 CrossRefGoogle Scholar
  14. 14.
    A. A. Ageshina, M. A. Uvarova, and S. E. Nefedov, Russ. J. Inorg. Chem. 60, 1218 (2015).  https://doi.org/10.1134/S0036023615100022 CrossRefGoogle Scholar
  15. 15.
    M. A. Uvarova, A. A. Ageshina, and S. E. Nefedov, Russ. J. Inorg. Chem. 60, 1210 (2015).  https://doi.org/10.1134/S0036023615100198 CrossRefGoogle Scholar
  16. 16.
    R. R. Datchuk, A. A. Grineva, M. A. Uvarova, and S. E. Nefedov, Russ. J. Inorg. Chem. 62, 1315 (2017).  https://doi.org/10.1134/S0036023617100059 CrossRefGoogle Scholar
  17. 17.
    A. A. Grineva, O. D. Grechova, R. R. Datchuk, et al., Russ. J. Inorg. Chem. 64, 1014 (2019).CrossRefGoogle Scholar
  18. 18.
    A. A. Grineva, M. A. Uvarova, R. R. Datchuk, et al., Russ. J. Inorg. Chem. 63, 610 (2018).  https://doi.org/10.1134/S0036023618050091 CrossRefGoogle Scholar
  19. 19.
    A. A. Grineva, R. R. Datchuk, M. A. Uvarova, et al., Russ. J. Inorg. Chem. 63, 468 (2018).  https://doi.org/10.1134/S0036023618040095 CrossRefGoogle Scholar
  20. 20.
    M. A. Uvarova, A. A. Grineva, R. R. Datchuk, et al., Russ. J. Inorg. Chem. 63, 618 (2018).  https://doi.org/10.1134/S0036023618050108 CrossRefGoogle Scholar
  21. 21.
    T. G. G. Battye, L. Kontogiannis, O. Johnson, et al., Acta Crystallogr., Sect. D 67, 271 (2011).  https://doi.org/10.1107/S0907444910048675 CrossRefGoogle Scholar
  22. 22.
    P. R. Evans, Acta Crystallogr., Sect. D 62, 72 (2006).  https://doi.org/10.1107/S0907444905036693 CrossRefGoogle Scholar
  23. 23.
    SMART (control) and SAINT (integration) Software, Version 5.0 (Bruker, Madison, WI, 1997).Google Scholar
  24. 24.
    SAINT: Area-Detector Integration Sofware (Bruker, Madison, WI, 2012).Google Scholar
  25. 25.
    G. M. Sheldrick, SADABS: Program for Scaling and Correction of Area Detector Data (Univ. of Göttingen, Göttingen, 1997).Google Scholar
  26. 26.
    G. M. Sheldrick, Acta Crystallogr., Sect. C 71, 3 (2015).  https://doi.org/10.1107/S2053229614024218 CrossRefGoogle Scholar
  27. 27.
    Y. J. Song, H. Kwak, Y. M. Lee, et al., Polyhedron 28, 1241 (2009).  https://doi.org/10.1016/j.poly.2009.02.014 CrossRefGoogle Scholar
  28. 28.
    K. Biradha, C. Seward, and M. J. Zaworotko, Angew. Chem., Int. Ed. 38, 492 (1999).  https://doi.org/10.1002/(SICI)1521-3773(19990215)38:4<492::AID-ANIE492>3.0.CO:2-%23 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • R. R. Datchuk
    • 1
  • A. A. Grineva
    • 1
  • M. A. Uvarova
    • 1
  • I. A. Yakushev
    • 1
  • Ya. V. Zubavichus
    • 2
    • 3
  • S. E. Nefedov
    • 1
    Email author
  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  2. 2.National Research Center “Kurchatov Institute”MoscowRussia
  3. 3.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations