Advertisement

Russian Journal of Inorganic Chemistry

, Volume 64, Issue 7, pp 907–913 | Cite as

Tl–Bi–Er–Te System in the Composition Region Tl2Te–Tl9BiTe6–Tl9ErTe6

  • S. Z. ImamaliyevaEmail author
  • I. F. Mekhdiyeva
  • V. A. Gasymov
  • M. B. Babanly
PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • 10 Downloads

Abstract

Phase equilibria in the quaternary system Tl–Bi–Er–Te in the composition region Tl2Te–Tl9BiTe6–Tl9ErTe6 were studied by physicochemical analysis methods. The phase diagram of the boundary system Tl2Te–Tl9BiTe6 was refined. It was shown that this system is a quasi-binary system of the peritectic type and is characterized by the formation of limited solid solutions based on the initial compounds. A number of diagrams were constructed for the first time, namely, some polythermal sections; the isothermal sections of the phase diagram at 300, 760, and 780 K; and the projections of the liquidus and solidus surfaces of the system Tl2Te–Tl9BiTe6–Tl9ErTe6. It was demonstrated that, in this system, there is a wide region of solid solutions with the Tl5Te3 structure (δ-phase), which occupies more than 90% of the area of the concentration triangle. The homogeneity range of Tl2Te is 5–7 mol %. The obtained results can be used for choosing the compositions of solution melts and the temperature conditions for growing crystals of the δ-phase of a given composition, which are of practical interest as promising thermoelectric and magnetic materials.

Keywords:

thallium-bismuth-erbium-tellurides phase equilibria liquidus and solidus solutions solid solutions 

Notes

FUNDING

This work was performed within the framework of the scientific program “Promising Materials for Spintronics and Quantum Computing” of an international laboratory based on the Institute of Catalysis and Inorganic Chemistry, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan, and the Donostia International Physics Center, Donostia–San Sebastián, Gipuzkoa, Spain.

REFERENCES

  1. 1.
    A. V. Shevel’kov, Usp. Khim. 77, 31 (2008).  https://doi.org/10.1070/RC2008v077n01ABEH003746 Google Scholar
  2. 2.
    K. Kurosaki and S. Yamanaka, Phys. Status Solidi A 210, 82 (2013).  https://doi.org/10.1002/pssa.201228680 CrossRefGoogle Scholar
  3. 3.
    Y. Shi, A. Assoud, S. Ponou, et al., J. Am. Chem. Soc. 140, 8578 (2018).  https://doi.org/10.1021/jacs.8b04639 CrossRefGoogle Scholar
  4. 4.
    S. V. Eremeev, Y. M. Koroteev, and E. V. Chulkov, JETP Lett. 91, 594 (2010).  https://doi.org/10.1134/S0021364010110111 CrossRefGoogle Scholar
  5. 5.
    O. Breunig, Z. Wang, A. A. Taskin, et al., Nat. Commun. 8, 15545 (2017).  https://doi.org/10.1038/ncomms15545 CrossRefGoogle Scholar
  6. 6.
    B. Singh, H. Lin, R. Prasad, et al., Phys. Rev. B 93, 085113 (2016). https://doi.org/https://doi.org/10.1103/PhysRevB.93.085113CrossRefGoogle Scholar
  7. 7.
    J. Ruan, S. K. Jian, D. Zhang, et al., Phys. Rev. Lett. 115, 226801 (2016).  https://doi.org/10.1103/PhysRevLett.116.226801
  8. 8.
    W. Lin, H. Chen, J. He, et al., ACS Photonics 4, 2891 (2017).  https://doi.org/10.1021/acsphotonics.7b00891 CrossRefGoogle Scholar
  9. 9.
    W. Lin, O. Y. Kontsevoi, Z. Liu, et al., Cryst. Growth Des. 18, 3484 (2018).  https://doi.org/10.1021/acs.cgd.8b00242 CrossRefGoogle Scholar
  10. 10.
    I. Guler and N. Gasanly, Optik. 157, 895 (2018).  https://doi.org/10.1016/j.ijleo.2017.11.120 CrossRefGoogle Scholar
  11. 11.
    I. Schewe, P. Böttcher, and H. G. Schnering, Z. Kristallogr. 188, 287 (1989). https://doi.org/10.1524/zkri.1989.188.14.287CrossRefGoogle Scholar
  12. 12.
    S. Bhan and K. Shubert, J. Less. Common Met. 20, 229 (1970).  https://doi.org/10.1016/0022-5088(70)90066-4 CrossRefGoogle Scholar
  13. 13.
    M. B. Babanly, A. Akhmadyar, and A. A. Kuliev, Zh. Neorg. Khim. 30, 1051 (1985).Google Scholar
  14. 14.
    M. B. Babanly, A. Akhmadyar, and A. A. Kuliev, Zh. Neorg. Khim. 30, 2356 (1985).Google Scholar
  15. 15.
    S. Z. Imamalieva, F. M. Sadygov, and M. B. Babanly, Inorg. Mater. 44, 935 (2008).  https://doi.org/10.1134/S0020168508090070 CrossRefGoogle Scholar
  16. 16.
    D. M. Babanly, I. R. Amiraslanov, A. V. Shevelkov, et al., J. Alloys Compd. 644, 106 (2015).CrossRefGoogle Scholar
  17. 17.
    S. Bradtmöller and P. Böttcher, Z. Kristallogr. 209, 97 (1994). https://doi.org/10.1524/zkri.1994.209.1.97Google Scholar
  18. 18.
    S. Bradtmöller and P. Böttcher, Z. Kristallogr. 209, 75 (1994). https://doi.org/10.1524/zkri.1994.209.1.75Google Scholar
  19. 19.
    S. Bradtmöller and P. Böttcher, Z. Anorg. Allg. Chem. 619, 1155 (1993).  https://doi.org/10.1002/zaac.19936190702 CrossRefGoogle Scholar
  20. 20.
    R. Blachnik and H. A. Dreibach, J. Solid State Chem. 52, 53 (1984).  https://doi.org/10.1016/0022-4596(84)90197-X CrossRefGoogle Scholar
  21. 21.
    D. M. Babanly, M. I. Chiragov, and M. B. Babanly, Chem. Probl., No. 2, 149 (2005).Google Scholar
  22. 22.
    M. Piasecki, M. G. Brik, I. E. Barchiy, et al., J. Alloys Compd. 710, 600 (2017).  https://doi.org/10.1016/j.jallcom.2017.03.280 CrossRefGoogle Scholar
  23. 23.
    F. Heinke, L. Eisenburger, R. Schlegel, et al., Z. Anorg. Allg. Chem. 643, 447 (2017).  https://doi.org/10.1002/zaac.201600449 CrossRefGoogle Scholar
  24. 24.
    K. E. Arpino, B. D. Wasser, and T. M. McQueen, APL Mater. 3, 041507 (2015).CrossRefGoogle Scholar
  25. 25.
    S. Bangarigadu-Sanasy, C. R. Sankar, P. Schlender, et al., J. Alloys Compd. 549, 126 (2013).  https://doi.org/10.1016/j.jallcom.2012.09.023 CrossRefGoogle Scholar
  26. 26.
    S. Bangarigadu-Sanasy, C. R. Sankar, P. A. Dube, et al., J. Alloys. Compd. 589, 389 (2014).  https://doi.org/10.1016/j.jallcom.2013.11.229 CrossRefGoogle Scholar
  27. 27.
    Q. Guo and H. Kleinke, J. Alloys Compd. 630, 37 (2015).  https://doi.org/10.1016/j.jallcom.2015.01.025 CrossRefGoogle Scholar
  28. 28.
    W. H. Shah, A. Khan, M. Waqas, et al., Chalcogenide Lett. 14, 61 (2017).Google Scholar
  29. 29.
    W. H. Shah, A. Khan, S. Tajudin, et al., Chalcogenide Lett. 14, 187 (2017).Google Scholar
  30. 30.
    W. M. Khan, W. H. Shah, S. Khan, et al., Int. J. Heat Technol. 36, 602 (2018).  https://doi.org/10.18280/ijht.360224 CrossRefGoogle Scholar
  31. 31.
    V. N. Tomashyk, Multinary Alloys Based on III–V Semiconductors (CRC Press, Boca Raton, FL, 2019).Google Scholar
  32. 32.
    V. P. Zlomanov, Russ. J. Inorg. Chem. 55, 1740 (2010).  https://doi.org/10.1134/S0036023610110112 CrossRefGoogle Scholar
  33. 33.
    M. B. Babanly, E. V. Chulkov, Z. S. Aliev, et al., Russ. J. Inorg. Chem. 62, 1703 (2017).  https://doi.org/10.1134/S0036023617130034 CrossRefGoogle Scholar
  34. 34.
    S. Z. Imamaliyeva, D. M. Babanly, D. B. Tagiev, and M. B. Babanly, Russ. J. Inorg. Chem. 63, 1703 (2018).  https://doi.org/10.1134/S0036023618130041 Google Scholar
  35. 35.
    S. Z. Imamaliyeva, T. M. Gasanly, F. M. Sadygov, et al., Russ. J. Inorg. Chem. 63, 262 (2018).  https://doi.org/10.1134/S0036023618020079 CrossRefGoogle Scholar
  36. 36.
    S. Z. Imamalieva, T. M. Gasanly, V. P. Zlomanov, et al., Inorg. Mater. 53, 361 (2017).  https://doi.org/10.1134/S0020168517040069 CrossRefGoogle Scholar
  37. 37.
    M. M. Asadov, M. B. Babanly, and A. A. Kuliev, Neorg. Mater. 13, 1407 (1977).Google Scholar
  38. 38.
    I. F. Mekhdiyeva, K. N. Babanly, M. A. Mahmudova, et al., Azerb. Chem. J., No. 2, 80 (2018).Google Scholar
  39. 39.
    R. Cerný, J.-M. Joubert, Y. Filinchuk, and Y. Feutelais, Acta Crystallogr. C 58, i63.  https://doi.org/10.1107/S0108270102005085
  40. 40.
    T. Doert and P. Böttcher, Z. Kristallogr. 209, 95 (1994). https://doi.org/10.1524/zkri.1994.209.1.95Google Scholar
  41. 41.
    W. Gawel, E. Zaleska, and J. Terpilowski, J. Therm. Anal. 35, 59 (1989).  https://doi.org/10.1007/BF01914264 CrossRefGoogle Scholar
  42. 42.
    Yu. P. Afinogenov, E. G. Goncharov, G. V. Semenova, and V. P. Zlomanov, Physicochemical Analysis of Multicomponent Systems (MFTI, Moscow, 2006) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. Z. Imamaliyeva
    • 1
    • 2
    Email author
  • I. F. Mekhdiyeva
    • 2
  • V. A. Gasymov
    • 2
  • M. B. Babanly
    • 2
  1. 1.Baku Branch of Lomonosov Moscow State UniversityBakuAzerbaijan
  2. 2.Institute of Catalysis and Inorganic Chemistry, National Academy of Sciences of AzerbaijanBakuAzerbaijan

Personalised recommendations