Advertisement

Russian Journal of Inorganic Chemistry

, Volume 64, Issue 7, pp 946–954 | Cite as

Photocatalytic Studies of Composite Ferrite Nanoparticles

  • A. RahmanEmail author
  • R. Jayaganthan
INORGANIC MATERIALS AND NANOMATERIALS
  • 1 Downloads

Abstract

Composite ferrite nanoparticles Co1 – xZnxFe2O4/Ni1 – xZnxFe2O4, x = 0.1–0.5) have been synthesized by co-precipitation method and annealed at temperature of 800°C for 2 h in air. The synthesized samples have been characterized by X-ray powder diffraction, FE-SEM/EDS, and UV-Vis spectroscopy. The prepared nanoparticles exhibit a cubic crystal structure observed from X-ray powder diffraction experiment. It has been observed that the Co0.7Zn0.3Fe2O4/Ni0.7Zn0.3Fe2O4 nanoparticles exhibit higher optical absorbance spectrum at 400 to 800 nm wavelength due to its smaller crystal size (100.8 nm) as compared to the composite ferrite nanoparticles Co0.9Zn0.1Fe2O4/Ni0.9Zn0.1Fe2O4 (176.2 nm), Co0.8Zn0.2Fe2O4/Ni0.8Zn0.2Fe2O4 (134.3 nm), Co0.6Zn0.4Fe2O4/Ni0.6Zn0.4Fe2O4 (165.6 nm), and Co0.5Zn0.5Fe2O4/Ni0.5Zn0.5Fe2O4 (245.6 nm) nanoparticles. The photocatalytic activity of composite ferrite nanoparticles have been studied by performing the decomposition of methylene blue dye solution under UV light irradiation within 0 to 4 h. The methylene blue dye solution was considerably photodegraded by Co0.7Zn0.3Fe2O4/Ni0.7Zn0.3Fe2O4 photocatalyst under UV irradiation within 0–4 h to the efficiency of 96%. The pseudo first order rate constant of the degradation has been found to be 0.0144 S–1. The degradation mechanisms are discussed.

Keywords:

photocatalytic activity, composite ferrite nanoparticles, X-ray powder diffraction field emission scanning electron microscope, spectrophotometer 

Notes

Supplementary material

11502_2019_2018_MOESM1_ESM.pdf (392 kb)
11502_2019_2018_MOESM1_ESM.pdf

REFERENCES

  1. 1.
    A. Masakazu, T. Masato, I. Keita, et al., in Semiconductor Photochemistry and Photophysics (Marcel Dekker, 2003).Google Scholar
  2. 2.
    A. Masakazu, T.Masato, I. Keita, et al., Curr. Opin. Solid State Mater. Sci. 6, 381 (2002).  https://doi.org/10.1016/S1359-0286(02)00107-9 CrossRefGoogle Scholar
  3. 3.
    H. R. Pant, C.H. Park, B. Pant, et al., Ceram. Int. 38, 2943 (2012).  https://doi.org/10.1016/j.ceramint.2011.11.071 CrossRefGoogle Scholar
  4. 4.
    S. B. Sun, X. T. Chang, X. J. Li, and Z. J. Li, Ceram. Int. 39, 5197 (2013).  https://doi.org/10.1016/j.ceramint.2012.12.018 CrossRefGoogle Scholar
  5. 5.
    M. H. Habibi and M.H. Rahmati, Spectrochim. Acta A 133, 13 (2014).  https://doi.org/10.1016/j.saa.2014.04.110 CrossRefGoogle Scholar
  6. 6.
    L. Zhong and F. Haghighat, Build. Environ. 91, 191 (2015). doi.org/ https://doi.org/10.1016/j.buildenv.2015.01.033 CrossRefGoogle Scholar
  7. 7.
    Ni. Meng, K. H. L. Michael, Y. C. L. Dennis, and K. Sumath, Renew. Sust. Energy Rev. 11, 401 (2007)  https://doi.org/10.1016/j.rser.2005.01.009 CrossRefGoogle Scholar
  8. 8.
    H. M. Coleman, K. Chiang, and R. Amal, Chem. Eng. J. 113, 65 (2005). https://doi.org/10.1016/j.cej.2005.07.014 CrossRefGoogle Scholar
  9. 9.
  10. 10.
    D. L. Liao, C. A. Badour, and B. Q. Liao, J. Photochem. Photobiol. 194, 11 (2008).  https://doi.org/10.1016/j.jphotochem.2007.07.008 CrossRefGoogle Scholar
  11. 11.
    N. Dehghan-Niarostami, F. Taleshi, A. Pahlavan, et al., Int. Nano Lett. 4, 121 (2014).  https://doi.org/10.1007/s40089-014-0121-8 CrossRefGoogle Scholar
  12. 12.
    C. Borgohain, K. K. Senapati, K. C. Sarma, and P. Phukan, J. Mol. Catal. A: Chem. 363364, 495 (2012).  https://doi.org/10.1016/j.molcata.2012.07.032
  13. 13.
    C. Singh, S. Jauhar, V. Kumar, et al., Mater. Chem. Phys. 156, 188 (2015).  https://doi.org/10.1016/j.matchemphys.2015.02.046 CrossRefGoogle Scholar
  14. 14.
    G. Fan, J. Tong, and F. Li, Ind. Eng. Chem. Res. 51, 13639 (2012).  https://doi.org/10.1021/ie201933g CrossRefGoogle Scholar
  15. 15.
    R. Sharma, S. Bansal, and S. Singhal, RSC Adv. 8, 1 (2015). doi: Google Scholar
  16. 16.
    A. Afkhami, S. Sayari, R. Moosavi, and T. Madrakian, J. Indust. Engin. Chem. 21, 920 (2015).  https://doi.org/10.1016/j.jiec.2014.04.033 CrossRefGoogle Scholar
  17. 17.
    P. Xiong, Y. Fua, L. Wang, and X. Wang, Chem. Engin. J. 196196, 149 (2012).  https://doi.org/10.1016/j.cej.2012.05.007
  18. 18.
    J. Chen, T. Chen, Li. W. Lai, et al., Materials 8, 4273 (2015).  https://doi.org/10.3390/ma8074273 CrossRefGoogle Scholar
  19. 19.
    S. T. Assar, H. F. Abosheiasha, and M. K. El Nimr, J. Magn. Magn.Mater. 354, 136 (2014).  https://doi.org/10.1016/j.jmmm.2013.10.022 CrossRefGoogle Scholar
  20. 20.
    S. F. Mansour and M. A. Elkestawy, Ceram. Int. 37, 1175 (2011). doi.org/ https://doi.org/10.1016/j.ceramint.2010.11.038 CrossRefGoogle Scholar
  21. 21.
    H. Zhu, S. Zhang, Y. X. Huang, et al., Nano Lett. 13, 2947 (2013).  https://doi.org/10.1021/nl4013248 CrossRefGoogle Scholar
  22. 22.
    J. Joseph, R. B. Tangsali, V. P. Mahadevan Pillai, et al., Mater. Res. Bull. 61, 475 (2014).  https://doi.org/10.1016/j.materresbull.2014.10.061 CrossRefGoogle Scholar
  23. 23.
    S. A. Morrison, C. L. Cahill, S. Calvin, et al., J. Appl. Phys. 95, 6392 (2004).  https://doi.org/10.1063/1.1715132 CrossRefGoogle Scholar
  24. 24.
    H. Malika, A. Mahmood, K. Mahmood, et al., Ceram. Int. 40, 9439 (2014).  https://doi.org/10.1016/j.ceramint.2014.02.015 CrossRefGoogle Scholar
  25. 25.
    I. Sharifia, H. Shokrollahia, M. M. Doroodmand, and R. Safia, J. Magn. Magn. Mater. 324, 1854 (2012).  https://doi.org/10.1016/j.jmmm.2012.01.015 CrossRefGoogle Scholar
  26. 26.
    D. Zou, D. Yan, L. Xiao, and Y. Dong, Surf. Coat. Technol. 202, 1928 (2008).  https://doi.org/10.1016/j.surfcoat.2007.08.022 CrossRefGoogle Scholar
  27. 27.
    C. Singh, S. Jauhar, V. Kumar, et al., Mater. Chem. Phys. 156, 188 (2015).  https://doi.org/10.1016/j.matchemphys.2015.02.046 CrossRefGoogle Scholar
  28. 28.
    M. S. Anwar, F. Ahmed, and B. H. Koo, Acta Mater. 71, 100(2014).  https://doi.org/10.1016/j.actamat.2014.03.002 CrossRefGoogle Scholar
  29. 29.
    M. H. Habibi and J. Parhizkar, Spectrochim. Acta Part A: Mol. Biomol. Spect. 150, 879 (2015).  https://doi.org/10.1016/j.saa.2015.06.040 CrossRefGoogle Scholar
  30. 30.
    H. Zhang, G. Chen, and D. W. Bahnemann, J. Mater. Chem. 19, 5089 (2009).  https://doi.org/10.1039/B821991E CrossRefGoogle Scholar
  31. 31.
    A. S. Ahmed, M. M. Shafeeq, M. L. Singla, et al., J. Lumin. 131, 1 (2011).  https://doi.org/10.1016/j.jlumin.2010.07.017
  32. 32.
    J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi 15, 627 (1966).  https://doi.org/10.1002/pssb.19660150224 CrossRefGoogle Scholar
  33. 33.
    S. Valencia, J. M Marin, and G. Restrepo, Open Mater. Sci. J. 4, 9 (2009).  https://doi.org/10.2174/1874088X01004010009 CrossRefGoogle Scholar
  34. 34.
    R. Elilarassi and G. Chandrasekaran, J Mater Sci. Mater. Electron. 21, 1168 (2010).  https://doi.org/10.1007/s10854-009-0041-y CrossRefGoogle Scholar
  35. 35.
    O. Yayapao, T. Thongtem, A. Phuruangrat, and S. Thongtem, J. Alloys Compd. 576, 72 (2013).  https://doi.org/10.1016/j.jallcom.2013.04.133 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials Engineering, National Institute of TechnologySrinagarHazratbalIndia
  2. 2.Department of Metallurgical and Materials Engineering and Centre of Nanotechnology, Indian Institute of TechnologyRoorkeeIndia
  3. 3.Department of Engineering Design, Indian Institute of Technology, MadrasChennaiIndia

Personalised recommendations