Advertisement

Russian Journal of Inorganic Chemistry

, Volume 64, Issue 7, pp 829–840 | Cite as

Synthesis and Electrochemical Properties of Lithium-Ion Battery Cathode Materials Based on LiFePO4–LiMn2O4 and LiFePO4–LiNi0.82Co0.18O2 Composites

  • A. E. MedvedevaEmail author
  • L. S. Pechen
  • E. V. Makhonina
  • A. M. Rumyantsev
  • Yu. M. Koshtyal
  • V. S. Pervov
  • I. L. Eremenko
SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • 13 Downloads

Abstract

Composites based on electrochemically active components, LiFePO4, LiMn2O4 and LiNi0.82Co0.18O2, for the use as cathode materials for lithium-ion batteries were synthesized using ultrasonic treatment. The effects of the sonication mode (series LiFePO4–LiMn2O4) and component ratio (series LiFePO4–LiNi0.82Co0.18O2) on the electrochemical performance of the resulting composites were studied. The obtained composites were examined by scanning electron microscopy and powder X-ray diffraction and tested in coin-type cells with lithium anode. Positive electrodes based on the obtained composites showed enhanced electrochemical performance.

Keywords:

cathode materials composites ultrasonic treatment lithium ion battery 

Notes

FUNDING

The study was carried out using equipment of the Shared Facility Center, Institute of General and Inorganic Chemistry, RAS, supported by the State Asignment of IGIC RAS in the area of basic research. This work was supported by the Council for Grants of the President of the Russian Federation (project no. MK-150.2017.3). This research was performed using the equipment of the JRC PMR IGIC RAS.

Supplementary material

11502_2019_2001_MOESM1_ESM.pdf (337 kb)
11502_2019_2001_MOESM1_ESM.pdf

REFERENCES

  1. 1.
    M. S. Whittingham, Chem. Rev. 104, 4271 (2004).  https://doi.org/10.1021/cr020731c CrossRefGoogle Scholar
  2. 2.
    L. Su, Y. Jing, and Z. Zhou, Nanoscale 3, 3967 (2011).  https://doi.org/10.1039/C1NR10550G CrossRefGoogle Scholar
  3. 3.
    S. Wang, Z. Zhang, A. Deb, et al., Ind. Eng. Chem. Res. 53, 19525 (2014).  https://doi.org/10.1021/ie502917b CrossRefGoogle Scholar
  4. 4.
    R. N. Kostoff, R. Tshiteya, K. M. Pfeil, et al., J. Power Sources 110, 163 (2002).  https://doi.org/10.1016/S0378-7753(02)00233-1 CrossRefGoogle Scholar
  5. 5.
    G. G. Amatucci, J. M. Tarascon, and L. C. Klein, J. Electrochem. Soc. 143, 1114 (1996).  https://doi.org/10.1149/1.1836594 CrossRefGoogle Scholar
  6. 6.
    J. N. Reimers and J. R. Dahn, J. Electrochem. Soc. 139, 2091 (1992).  https://doi.org/10.1149/1.2221184 CrossRefGoogle Scholar
  7. 7.
    T. Ohzuku and A. Ueda, J. Electrochem. Soc. 141, 2972 (1994).  https://doi.org/10.1149/1.2059267 CrossRefGoogle Scholar
  8. 8.
    L. Xia, Y. Xia, and Z. Liu, Electrochim. Acta 151, 429 (2015).  https://doi.org/10.1016/j.electacta.2014.11.062 CrossRefGoogle Scholar
  9. 9.
    D. Guyomard and J. M. Tarascon, Solid State Ionics 69, 222 (1994).  https://doi.org/10.1016/0167-2738(94)90412-X CrossRefGoogle Scholar
  10. 10.
    X. Gao, Y. Sha, Q. Lin, et al., J. Power Sources 275, 38 (2015).  https://doi.org/10.1016/j.jpowsour.2014.10.099 CrossRefGoogle Scholar
  11. 11.
    H. Zhang, Y. Xu, and D. Liu, RSC Adv. 5, 11091 (2015).  https://doi.org/10.1039/C4RA13041C
  12. 12.
    D. G. Kellerman, Yu. G. Chukalkin, N. I. Medvedeva, et al., Mater. Chem. Phys. 149, 209 (2015).  https://doi.org/10.1016/j.matchemphys.2014.10.008 CrossRefGoogle Scholar
  13. 13.
    Y. Gu, H. Wang, Y. Zhu, et al., Solid State Ionics 274, 106 (2015).  https://doi.org/10.1016/j.ssi.2015.03.010 CrossRefGoogle Scholar
  14. 14.
    P. Zhang, H. Wang, Q. Si, et al., Solid State Ionics 272, 101 (2015).  https://doi.org/10.1016/j.ssi.2015.01.004 CrossRefGoogle Scholar
  15. 15.
    A. Svitan’ko, V. Scopets, S. Novikova, et al., Solid State Ionics 271, 42 (2015).  https://doi.org/10.1016/j.ssi.2014.10.022 CrossRefGoogle Scholar
  16. 16.
    N. Delaporte, A. Perea, R. Amin, et al., J. Power Sources 280, 246 (2015).  https://doi.org/10.1016/j.jpowsour.2015.01.014 CrossRefGoogle Scholar
  17. 17.
    M. M. Majdabadi, S. Farhad, M. Farkhondeh, et al., J. Power Sources 275, 633 (2015).  https://doi.org/10.1016/j.jpowsour.2014.11.066 CrossRefGoogle Scholar
  18. 18.
    Y. Koyama, Y. Makimura, I. Tanaka, et al., J. Electrochem. Soc. 151, A1499 (2004).  https://doi.org/10.1149/1.1783908 CrossRefGoogle Scholar
  19. 19.
    K. M. Shaju, G. V. Subba Rao, and B. V. R. Chowdari, Electrochim. Acta 48, 145 (2002).  https://doi.org/10.1016/S0013-4686(02)00593-5 CrossRefGoogle Scholar
  20. 20.
    T. Nukuda, T. Inamasu, A. Fujii, et al., J. Power Sources 146, 611 (2005).  https://doi.org/10.1016/j.jpowsour.2005.03.074 CrossRefGoogle Scholar
  21. 21.
    B. J. Hwang, Y. W. Tsai, D. Carlier, et al., Chem. Mater. 15, 3676 (2003).  https://doi.org/10.1021/cm030299v CrossRefGoogle Scholar
  22. 22.
    A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, J. Electrochem. Soc. 144, 1188 (1997).  https://doi.org/10.1149/1.1837571 CrossRefGoogle Scholar
  23. 23.
    Y. Guo, Y. Huang, D. Jia, et al., J. Power Sources 246, 912 (2014).  https://doi.org/10.1016/j.jpowsour.2013.08.047 CrossRefGoogle Scholar
  24. 24.
    A. Eftekhari, J. Power Sources 343, 395 (2017).  https://doi.org/10.1016/j.jpowsour.2017.01.080 CrossRefGoogle Scholar
  25. 25.
    K. M. Kim, J.-C. Kim, N.-G. Park, et al., J. Power Sources 123, 69 (2003).  https://doi.org/10.1016/S0378-7753(03)00512-3 CrossRefGoogle Scholar
  26. 26.
    D. P. Abraham, R. D. Twesten, M. Balasubramanian, et al., Electrochem. Commun. 4, 620 (2002).  https://doi.org/10.1016/S1388-2481(02)00388-0 CrossRefGoogle Scholar
  27. 27.
    L. S. Pechen’, E. V. Makhonina, A. M. Rumyantsev, et al., Russ. J. Inorg. Chem. 63, 1534 (2018).  https://doi.org/10.1134/S0036023618120173
  28. 28.
    Y. V. Shatilo, V. S. Pervov, E. V. Makhonina, et al., Inorg. Mater. 42, 787 (2006).  https://doi.org/10.1134/S0020168506070168 CrossRefGoogle Scholar
  29. 29.
    E. V. Makhonina, Y. V. Shatilo, V. S. Dubasova, et al., Inorg. Mater. 45, 935 (2009).  https://doi.org/10.1134/S0020168509080214 CrossRefGoogle Scholar
  30. 30.
    E. V. Makhonina, A. E. Medvedeva, V. S. Dubasova, et al., Inorg. Mater. 51, 1264 (2015).  https://doi.org/10.1134/S0020168515110059 CrossRefGoogle Scholar
  31. 31.
    C. Heubner, C. Lammel, and M. Schneider, J. Power Sources 344, 170 (2017).  https://doi.org/10.1016/j.jpowsour.2017.01.106 CrossRefGoogle Scholar
  32. 32.
    S. H. Park, S. H. Kang, C. S. Johnson, et al., Electrochem. Commun. 9, 262 (2007). doi org/ https://doi.org/10.1016/j.elecom.2006.09.014
  33. 33.
    J. C. Arrebola, A. Caballero, and L. Hernan, Electrochem. Solid State Lett. 8, A641 (2005).  https://doi.org/10.1149/1.2116147 CrossRefGoogle Scholar
  34. 34.
    Z. F. Ma, X. Q. Yang, and X. Z. Liao, Electrochem. Commun. 3, 425 (2001).  https://doi.org/10.1016/S1388-2481(01)00195-3 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. E. Medvedeva
    • 1
    Email author
  • L. S. Pechen
    • 1
  • E. V. Makhonina
    • 1
  • A. M. Rumyantsev
    • 2
    • 3
  • Yu. M. Koshtyal
    • 2
    • 3
  • V. S. Pervov
    • 1
  • I. L. Eremenko
    • 1
  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Ioffe Physical Technical Institute, Russian Academy of SciencesSaint PetersburgRussia
  3. 3.Peter the Great Saint-Petersburg Polytechnic UniversitySaint PetersburgRussia

Personalised recommendations