Advertisement

Russian Journal of Inorganic Chemistry

, Volume 64, Issue 7, pp 924–929 | Cite as

Environment of Al3+ Ion and Transsolvation Process in Water–Urea Solutions of Aluminum Chloride

  • A. K. LyashchenkoEmail author
  • E. G. Tarakanova
  • E. A. Frolova
  • L. I. Demina
  • V. P. Danilov
  • G. V. Yukhnevich
  • B. G. Balmaev
PHYSICAL CHEMISTRY OF SOLUTIONS
  • 4 Downloads

Abstract

Reaction of aluminum chloride crystalline hydrate AlCl3(H2O)6 and urea in solid state and AlCl3(H2O)6–CO(NH2)2–H2O and AlCl3(CO(NH2)2)6–H2O aqueous solutions has been studied. Analysis of IR spectra of studied samples showed that complete substitution of water molecules in the first coordination sphere of Al3+ ion by urea molecules occurs at the molar ratio Al : CO(NH2)2 = 1 : 6 in solid and liquid phase. Computation of structures, IR spectra, and energy parameters for (CO(NH2)2)2, CO(NH2)2(H2O)2, CO(NH2)2(H2O)4, \({\text{Al}}\left( {{\text{CO}}{{{\left( {{\text{N}}{{{\text{H}}}_{2}}} \right)}}_{2}}} \right)_{6}^{{3 + }},\)\({\text{Al(CO(N}}{{{\text{H}}}_{2}}{{)}_{2}})_{{6\,\, + \,\,6}}^{{3 + }}\), and \({\text{Al(CO(N}}{{{\text{H}}}_{2}}{{)}_{2}}{{)}_{6}}({{{\text{H}}}_{2}}{\text{O}})_{3}^{{3 + }}\) complexes was performed using DFT (B3LYP-6-31++G(d,p)) method. On the basis of obtained data, competition between water and urea molecules in AlCl3(CO(NH2)2)6 aqueous solutions has been studied and experimental results have been explained.

Keywords:

AlCl3(H2O)6 AlCl3(CO(NH2)2)6 aluminum complexes IR spectra quantum chemical calculation 

Notes

ACKNOWLEDGMENTS

The IR spectra were recorded using equipment of the Shared Facility Center, Institute of General and Inorganic Chemistry, RAS, supported by the State Assignment of IGIC RAS in the area of basic research.

REFERENCES

  1. 1.
    G. P. Panasyuk, A. K. Lyashchenko, L. A. Azarova, et al., Russ. J. Inorg. Chem. 63, 843 (2018).  https://doi.org/10.1134/S0036023618060190 CrossRefGoogle Scholar
  2. 2.
    A. T Zotov, Urea (Goskhimiztat, Moscow, 1963) [in Russian].Google Scholar
  3. 3.
    Structural Self-Organization in Solutions at Phase Boundary, Ed. by A. Yu. Tsivadze (LKI, Moscow, 2008) [in Russian].Google Scholar
  4. 4.
    R. Chitra and P. E. Smith, J. Phys. Chem. B 104, 5854 (2000).CrossRefGoogle Scholar
  5. 5.
    R. Chitra and P. E. Smith, J. Phys. Chem. B 106, 1491 (2002).CrossRefGoogle Scholar
  6. 6.
    A. K. Lyashchenko, V. S. Dunyashev, and A. Yu. Zasetskii, Zh. Fiz. Khim. 91, 837 (2017).  https://doi.org/10.7868/S004445371705017X Google Scholar
  7. 7.
    U. Kaatze, J. Chem. Phys. 148, 014 504/1 (2018).  https://doi.org/10.1063/1.5003569
  8. 8.
    D. Bandyopadhyay, S. Mohan, S. K. Ghosh, and N. Choudhury, J. Phys. Chem. B 118, 11 757 (2014).  https://doi.org/10.1021/jp505147u CrossRefGoogle Scholar
  9. 9.
    S. Funkner, M. Havenith, and G. Schwaab, J. Phys. Chem. B 116, 13 374 (2012).  https://doi.org/10.1021/jp308699w CrossRefGoogle Scholar
  10. 10.
    P. Chettiyankandy and S. Chowdhuri, J. Mol. Liq. 216, 788 (2016).  https://doi.org/10.1016/j.molliq.2016.02.019 CrossRefGoogle Scholar
  11. 11.
    Y. Kameda, A. Maki, Y. Amo, and T. Usuki, Bull. Chem. Soc. Jpn. 83, 131 (2010).CrossRefGoogle Scholar
  12. 12.
    K. R. Devi and S. Rathika, J. Chem. Pharm. Research 7, 967 (2015).Google Scholar
  13. 13.
    Y. Qiu and L. Gao, J. Am. Chem. Soc. 83, 352 (2004).Google Scholar
  14. 14.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. Gaussian 09, Rev. A.02. Gaussian, Inc., Wallingford CT, 2009.Google Scholar
  15. 15.
    P. D. Godfrey, R. D. Brown, and A. N. Hunter, J. Mol. Struct. 413414, 405 (1997).CrossRefGoogle Scholar
  16. 16.
    S. T. King, Spectrochim. Acta A 28, 165 (1972).CrossRefGoogle Scholar
  17. 17.
    J. H. M. Mooy, W. Krieger, D. Heijdenrijk, and C. H. Stam, Chem. Phys. Lett. 29, 179 (1974).CrossRefGoogle Scholar
  18. 18.
    B. N. Figgis and L. G. B. Wadley, Acta Crystallogr. B 28, 187 (1972).CrossRefGoogle Scholar
  19. 19.
    D. Moon, S. Tanaka, T. Akitsu, and J.-H. Choi, Acta Crystallogr. E 71, 1335 (2015).  https://doi.org/10.1107/S2056989015019258 Google Scholar
  20. 20.
    G. B. Bokii, Crystal Chemistry (Nauka, Moscow, 1971) [in Russian].Google Scholar
  21. 21.
    R. B. Penland, S. Mizushima, C. Curran, and J. V. Quagliano, J. Am. Chem. Soc. 79, 1575 (1957).CrossRefGoogle Scholar
  22. 22.
    N. S. Antonenko and Ya. A. Nuger, Zh. Neorg. Khim. 11, 1072 (1966).Google Scholar
  23. 23.
    R. Keuleers, J. Janssens, and H. O. Desseyn, Thermochim. Acta 354, 125 (2000).CrossRefGoogle Scholar
  24. 24.
    S. G. Raptis, J. Anastassopoulou, and T. Theophanidies, Theor. Chem. Accounts 105, 156 (2000).  https://doi.org/10.1007/s002140000200 CrossRefGoogle Scholar
  25. 25.
    O. Carp, L. Patron, L. Diamandescu, and A. Reller, Thermochim. Acta 390, 169 (2002).CrossRefGoogle Scholar
  26. 26.
    P. R. Smirnov and V. N. Trostin, Zh. Obshch. Khim. 83, 18 (2013).Google Scholar
  27. 27.
    W. W. Rudolph, R. Mason, and C. C. Pye, Phys. Chem. Chem. Phys. 2, 5030 (2000).  https://doi.org/10.1039/b003764h CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. K. Lyashchenko
    • 1
    Email author
  • E. G. Tarakanova
    • 1
  • E. A. Frolova
    • 1
  • L. I. Demina
    • 2
  • V. P. Danilov
    • 1
  • G. V. Yukhnevich
    • 1
  • B. G. Balmaev
    • 3
  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia
  3. 3.Baikov Institute of Metallurgy and Material Science, Russian Academy of SciencesMoscowRussia

Personalised recommendations