Advertisement

Russian Journal of Inorganic Chemistry

, Volume 64, Issue 7, pp 934–940 | Cite as

Production of Ceramics Based on the Y2O3–ZrO2–HfO2 System for Casting Molds

  • Yu. I. Folomeikin
  • F. N. Karachevtsev
  • V. L. StolyarovaEmail author
INORGANIC MATERIALS AND NANOMATERIALS
  • 8 Downloads

Abstract

The potential of the Y2O3–ZrO2–HfO2 system for synthesizing the casting mold ceramic of the composition 15 mol % Y2O3 : 60 mol % ZrO2 : 25 mol % HfO2 was investigated. The effect of technological parameters on the morphology and main properties of ceramic molds produced by investment casting using the ceramic of the above composition was studied, and the basic recommendations for the further development of their production technology were considered. It was determined that a high-refractory casting mold stable to 2773 K can be obtained by conventional investment casting, in which the solid-phase sintering of the ceramic does not rule out the simultaneous combination with the synthesis of the chosen ternary solid solution of the composition 15 mol % Y2O3 : 60 mol % ZrO2 : 25 mol % HfO2, acting as a high-temperature binder.

Keywords:

hafnium zirconium and yttrium oxides casting molds investment casting 

Notes

FUNDING

This work was supported by the Russian Foundation for Basic Research (project no. 16-03-00940).

REFERENCES

  1. 1.
    Cast Blades of Gas-Turbine Engines: Alloys, Technology, and Coatings, Ed. by E. N. Kablov (Nauka, Moscow, 2006) [in Russian].Google Scholar
  2. 2.
    E. N. Kablov, Yu. A. Bondarenko, and A. B. Echin, Aviats. Mater. Tekhnol., No. S, 24 (2017).  https://doi.org/10.18577/2071-9140-2017-0-S24-38
  3. 3.
    B. P. Bewlay, L. Cretegny, M. Francis, et al., US Patent No. 7296616 B2 (2007).Google Scholar
  4. 4.
    S. F. Bancheri, F. J. Klug, and B. P. Bewlay, US Patent No. 7845390 B2 (2010).Google Scholar
  5. 5.
    B. P. Bewlay and F. J. Klug, Patent No. 7610945 B2 (2009).Google Scholar
  6. 6.
    D. Zhu, N. P. Bansal, and R. A. Miller, NASA/TM-2002-212544 (2003).Google Scholar
  7. 7.
    D. Zhu and R. A. Miller, NASA/TM-2004-213040 (2004).Google Scholar
  8. 8.
    W. A. Acosta, R. T. Bhatt, D. N. Brewer, and D. Zhu, AMPTIAC Q. 8 (4), 126 (2004).Google Scholar
  9. 9.
    X. Cao, J. Mater. Sci. Technol. 23, 15 (2007).CrossRefGoogle Scholar
  10. 10.
    Chong Wang, Dissertation (Univ. of Stuttgart, 2006), Report no. 189.Google Scholar
  11. 11.
    S. A. Kuznetsov, Chem. Pap. 66, 511 (2012).CrossRefGoogle Scholar
  12. 12.
    D. A. Chubarov and P. V. Matveev, Aviats. Mater. Tekhnol., No. 4, 43 (2013).Google Scholar
  13. 13.
    RF Patent No. 2176281S2, Byull. Izobret., No. 36 (2001).Google Scholar
  14. 14.
    D. K. Aleshin, Extended Abstract of Candidate’s Dissertation in Chemistry (Yekaterinburg, 2011).Google Scholar
  15. 15.
    B. R. Kumar and T. S. Rao, Int. J. Pure Appl. Sci. Technol. 4, 105 (2011).Google Scholar
  16. 16.
    V. B. Glushkova, M. V. Kravchinskaya, A. K. Kuznetsov, and P. A. Tikhonov, Hafnium Dioxide and Its Compounds with Rare-Earth Element Oxides (Nauka, Leningrad, 1984) [in Russian].Google Scholar
  17. 17.
    A. S. Novikov, S. V. Khar’kovskii, and A. A. Mukhin, Dvigatel’, No. 1, 2 (2017).Google Scholar
  18. 18.
    O. G. Ospennikova, L. I. Rassokhina, O. N. Bityutskaya, et al., Tr. VIAM: Elektron. Nauchno-Tekh. Zh. 52. (4), 3 (2017).  https://doi.org/10.18577/2307-6046-2017-0-4-1-1
  19. 19.
    Yu. A. Bondarenko, M. Yu. Kolodyazhnyi, A. B. Echin, et al., Tr. VIAM: Elektron. Nauchno-Tekh. Zh. 61 (1), 3 (2018). https://doi.org/10.18577/2307-6046-2018-0-1-1-1
  20. 20.
    Yu. I. Folomeikin, I. L. Svetlov, and I. G. Kuz’mina, Ogneupory I Tekh. Keram., Nos. 4–5, 15 (2016).Google Scholar
  21. 21.
    A. K. Zaitsev, I. L. Svetlov, Yu. I. Folomeikin, et al., Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., No. 6, 14 (2013).Google Scholar
  22. 22.
    M. F. Trubeja and V. S. Stubican, J. Am. Ceram. Soc. 71, 662 (1988).CrossRefGoogle Scholar
  23. 23.
    A. V. Shevchenko, L. M. Lopato, and T. V. Obolonchik, Izv. Akad. Nauk SSSR, Neorg. Mater. 23, 452 (1987).Google Scholar
  24. 24.
    T. V. Obolonchik, L. M. Lopato, G. I. Gerasimyuk, and A. V. Shevchenko, Neorg. Mater. 27, 2345 (1991).Google Scholar
  25. 25.
    G. D. Nipan, Inorg. Mater. 35, 1069 (1999).Google Scholar
  26. 26.
    E. V. Dudnik, S. N. Lakiza, Ya. S. Tishchenko, et al., Powder Metall. Met. Ceram. 53, 303 (2014).CrossRefGoogle Scholar
  27. 27.
    V. G. Sevast’yanov, E. P. Simonenko, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 57, 307 (2012).CrossRefGoogle Scholar
  28. 28.
    V. G. Sevastyanov, E. P. Simonenko, N. P. Simonenko, et al., Mater. Chem. Phys. 153, 78 (2015).  https://doi.org/10.1016/j.matchemphys.2014.12.037 CrossRefGoogle Scholar
  29. 29.
    V. L. Stolyarova, Tr. Kol’sk. Nauch. Tsentra Ross. Akad. Nauk 31 (5), 47 (2015).Google Scholar
  30. 30.
    RF Patent No. 2502578S1 (published December 27, 2013).Google Scholar
  31. 31.
    N. V. Sigareva, B. M. Gorelov, and D. L. Starokadomskii, Poverkhnost 20, 206 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Yu. I. Folomeikin
    • 1
  • F. N. Karachevtsev
    • 2
  • V. L. Stolyarova
    • 3
    Email author
  1. 1.Baranov Central Institute of Aviation MotorsMoscowRussia
  2. 2.All-Russian Scientific Research Institute of Aviation MaterialsMoscowRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations