Advertisement

Russian Journal of Inorganic Chemistry

, Volume 64, Issue 7, pp 857–863 | Cite as

A New Method for the Synthesis of TiO2/C Composites with the Use of Titanium Organic Compounds

  • Z. A. FattakhovaEmail author
  • G. S. Zakharova
  • E. I. Andreikov
  • I. S. Puzyrev
SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • 1 Downloads

Abstract

Anatase titania based TiO2/С nanocomposites have been synthesized via the thermal decomposition of titanium glycerolate prepared by the reaction between glycerin and tetraethoxytitanium or tetrabutoxytitanium. The content of carbon in the composite material is from 22.3 to 23.5 wt %. The principal physicochemical characteristics of the synthesized compounds have been determined by X-ray diffraction and thermogravimetric analysis, IR and Raman spectroscopy, and scanning electron microscopy (SEM). It has been found that the textural and morphological features of the TiO2/C nanocomposites are governed by the type of titanium alkoxide used to synthesize the precursor, i.e., titanium glycerolate.

Keywords:

titania carbon nanocomposite thermolysis titanium glycerolate 

Notes

ACKNOWLEDGMENTS

We are grateful to the TESCAN Company for help in SEM studies of the samples.

FUNDINGS

This work was performed in compliance with the state task to the Institute of Solid State Chemistry (Ural Branch, Russian Academy of Sciences) (project no. AAAA-16-116122810209-5).

REFERENCES

  1. 1.
    M. J. Gratzel, Photochem. Photobiol. 4 (2), 145 (2003).  https://doi.org/10.1016/S1389-5567(03)00026-1 CrossRefGoogle Scholar
  2. 2.
    J. A. Byrne, A. Davidson, P. S. M. Dunlop, et al., J. Photochem. Photobiol. A 148, 365 (2002).CrossRefGoogle Scholar
  3. 3.
    M. Abdullah and S. K. Kamarudin, Renew. Sust. En. Rev. 76, 212 (2017).CrossRefGoogle Scholar
  4. 4.
    Y.-S. Hu, L. Kienle, Y. -G. Guo, et al., Adv. Mater. 18, 1421 (2006).  https://doi.org/10.1002/adma.200502723 CrossRefGoogle Scholar
  5. 5.
    X. Chen and S. S. Mao, Chem. Rev. 107, 2891 (2007).  https://doi.org/10.1021/cr0500535 CrossRefGoogle Scholar
  6. 6.
    H. G. Yang and H. C. Zeng, J. Phys. Chem. B 108, 3492 (2004).  https://doi.org/10.1021/jp0377782 CrossRefGoogle Scholar
  7. 7.
    L. Chen, J. Tian, H. Qiu, et al., Ceram. Int. 35, 3275 (2009).  https://doi.org/10.1016/j.ceramint.2009.05.021 CrossRefGoogle Scholar
  8. 8.
    P. Roy, S. Berger, and P. Schmuki, Angew. Chem., Int. Ed. Engl. 50, 2904 (2011).  https://doi.org/10.1002/anie.201001374 CrossRefGoogle Scholar
  9. 9.
    D. P. Cozzoli, A. Kornowski, and H. Weller, J. Am. Chem. Soc. 125, 14 539 (2003).  https://doi.org/10.1021/ja036505h CrossRefGoogle Scholar
  10. 10.
    D. C. Valentin, E. Finazzi, and G. Pacchioni, Chem. Phys. 339, 44 (2007).  https://doi.org/10.1016/j.chemphys.2007.07.020 CrossRefGoogle Scholar
  11. 11.
    T. Ohno, T. Mitsui, and M. Matsumura, Chem. Lett. 32, 364 (2003).  https://doi.org/10.1246/cl.2003.364 CrossRefGoogle Scholar
  12. 12.
    J. C. Yu, J. Yu, W. Ho, et al., Chem. Mater. 14, 3808 (2002).  https://doi.org/10.1021/cm020027c CrossRefGoogle Scholar
  13. 13.
    X. Shi, Z. Zhang, K. Du, et al., J. Power Sources 330, 1 (2016).  https://doi.org/10.1016/j.jpowsour.2016.08.132 CrossRefGoogle Scholar
  14. 14.
    Y. Guo, D. He, S. Xia, et al., J. Nanomater 2012, 1 (2012).  https://doi.org/10.1155/2012/202794 CrossRefGoogle Scholar
  15. 15.
    M.-P. Zheng, Y.-P. Jin, G.-L. Jin, et al., J. Mater. Sci. Lett. 19, 433 (2000).  https://doi.org/10.1023/a:1006703224379 CrossRefGoogle Scholar
  16. 16.
    C.-Y. Yen, Y.-F. Lin, C.-H. Hung, et al., Nanotechnol. 19, 045 604 (2008).  https://doi.org/10.1088/0957-4484/19/04/045604 CrossRefGoogle Scholar
  17. 17.
    Q. Huang, S. Tian, D. Zeng, et al., ACS Catal. 3, 1477 (2013).  https://doi.org/10.1021/cs400080w CrossRefGoogle Scholar
  18. 18.
    M.-Q. Yang, N. Zhang, and Y.-J. Xu, ACS Appl. Mater. Int. 5, 1156 (2013).  https://doi.org/10.1021/am3029798 CrossRefGoogle Scholar
  19. 19.
    L. Zeng, C. Zheng, L. Xia, et al., J. Mater. Chem. 1, 4293 (2013).  https://doi.org/10.1039/c3ta10275k CrossRefGoogle Scholar
  20. 20.
    F. J. Maldonado-Hodar, C. Moreno-Castilla, and J. Rivera-Utrilla, Appl. Catal. A 203, 151 (2000).  https://doi.org/10.1016/s0926-860x(00)00480-4 CrossRefGoogle Scholar
  21. 21.
    Y. Gea, J. Zhu, Y. Lub, et al., Electrochim. Acta 176, 989 (2015).CrossRefGoogle Scholar
  22. 22.
    L. Xiong, Y. Xu, P. Lei, et al., Solid State Ionics 268, 265 (2014).  https://doi.org/10.1016/j.ssi.2014.08.009 CrossRefGoogle Scholar
  23. 23.
    J. Zhao, Y. Liu, M. Fan, et al., Inorg. Chem. Frontiers 2, 198 (2015).  https://doi.org/10.1039/c4qi00191e CrossRefGoogle Scholar
  24. 24.
    Y. Wei, J. Zhu, Y. Gan, et al., Adv. Powder Technol. 29, 2289 (2018).  https://doi.org/10.1016/j.apt.2018.05.016 CrossRefGoogle Scholar
  25. 25.
    X. Jiang, Y. Wang, T. Herricks, et al., J. Mater. Chem. 14, 695 (2004).  https://doi.org/10.1039/b313938g CrossRefGoogle Scholar
  26. 26.
    J. Jiang, F. Gu, W. Shao, et al., Ind. Eng. Chem. Res. 51, 2838 (2012).  https://doi.org/10.1021/ie202049j CrossRefGoogle Scholar
  27. 27.
    G. S. Zakharova, E. I. Andreikov, V. A. Osipova, et al., Inorg. Mater. 49, 1216 (2013).  https://doi.org/10.1134/S0020168513100154 CrossRefGoogle Scholar
  28. 28.
    H.-B. Kim and D.-J. Jang, Cryst. Eng. Commun. 17, 3325 (2015).  https://doi.org/10.1039/c5ce00257e CrossRefGoogle Scholar
  29. 29.
    G. S. Zakharova, A. Ottmann, L. Moller, et al., J. Mater. Sci. 53, 12 244 (2018).  https://doi.org/10.1007/s10853-018-2488-9 CrossRefGoogle Scholar
  30. 30.
    J. Das, F. S. Freitas, I. R. Evans, et al., J. Mater. Chem. 20, 4425 (2010).  https://doi.org/10.1039/b921373b CrossRefGoogle Scholar
  31. 31.
    M. Velasco, F. Rubio, J. Rubio, and J. L. Oteo, Thermochim. Acta 326, 91 (1999).  https://doi.org/10.1016/j.supflu.2018.04.017 CrossRefGoogle Scholar
  32. 32.
    S. Doeuff, M. Henry, C. Sanchez, et al., J. Non-Cryst. Solids 89, 206 (1987).CrossRefGoogle Scholar
  33. 33.
    D. A. Kazakov, A. V. Portnova, S. A. Onorin, et al., Izv. Vyssh. Uchebn. Zaved., Khim. Tekhnol. 54 (6), 39 (2011).Google Scholar
  34. 34.
    G. M. Kuz’micheva, E. V. Savinkina, L. N. Obolenskaya, et al., Crystallogr. Repts. 55, 866 (2010).  https://doi.org/10.1134/S1063774510050287 CrossRefGoogle Scholar
  35. 35.
    T. Ohsaka, F. Izumi, and Y. Fujiki, J. Raman Spectrosc. 7, 321 (1978).  https://doi.org/10.1002/jrs.1250070606 CrossRefGoogle Scholar
  36. 36.
    W. F. Zhang, Y. L. He, M. S. Zhang, et al., J. Phys. D: Appl. Phys. 33, 912 (2000).  https://doi.org/10.1088/0022-3727/33/8/305 CrossRefGoogle Scholar
  37. 37.
    A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14 095 (2000).  https://doi.org/10.1103/physrevb.61.14095 CrossRefGoogle Scholar
  38. 38.
    R. Liu, W. Guo, B. Sun, et al., Electrochim. Acta 156, 274 (2015).  https://doi.org/10.1016/j.electacta.2015.01.012 CrossRefGoogle Scholar
  39. 39.
    K. S. W. Sing, D. H. Everett, R. A. W. Haul, et al., Pure Appl. Chem. 57, 603 (1985).  https://doi.org/10.1351/pac198557040603 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Z. A. Fattakhova
    • 1
    Email author
  • G. S. Zakharova
    • 1
  • E. I. Andreikov
    • 2
  • I. S. Puzyrev
    • 2
  1. 1.Institute of Solid State Chemistry, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  2. 2.Postovskii Institute of Organic SynthesisYekaterinburgRussia

Personalised recommendations