Advertisement

Russian Journal of Inorganic Chemistry

, Volume 64, Issue 7, pp 847–856 | Cite as

Physicochemical Properties of Brushite and Hydroxyapatite Prepared in the Presence of Chitin and Chitosan

  • T. V. FadeevaEmail author
  • O. A. GolovanovaEmail author
SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • 1 Downloads

Abstract

We present the results of characterization of prepared composites comprising dicalcium phosphate dihydrate (DCPD, brushite) and hydroxyapatite in the polymeric matrix of chitin and chitosan. The crystallite sizes increase as the chitosan and chitin percentage in the composite increases. When samples are dissolved in isotonic saline, the degradation rate of brushite composites decreases as the chitosan and chitin percentage in the sample increases; for hydroxyapatite composites, an opposite trend is typical. The samples are shown to change their weight as a result of heat treatment.

Keywords:

crystallization dicalcium phosphate dihydrate composite morphology thermal properties dissolution 

Notes

REFERENCES

  1. 1.
    K. L. Kandyrin, Introduction to the Materials Science of Polymers (IPTs MITKhT, Moscow, 2002) [in Russian].Google Scholar
  2. 2.
    A. Yu. Khomenko, P. V. Popryadukhin, and T. B. Bogomolova, Ross. Nanotekhnol. 8, 41 (2013).Google Scholar
  3. 3.
    L. A. Nud’ga, Doctoral Dissertation in Chemistry (2006).Google Scholar
  4. 4.
    R. Jayakumar, K. Chennazhi, and S. Srinivasan, Int. J. Mol. Sci., No. 12, 1876 (2011).Google Scholar
  5. 5.
    T. G. Volova, Materials for Medicine, Cell and Tissue Engineering (IPK SFU, Krasnoyarsk, 2009) [in Russian].Google Scholar
  6. 6.
    S. N. Danil’chenko, O. V. Kalinkevich, and M. V. Pogorelov, Ortoped., Travmatol. Protez., No. 1, 66 (2009).Google Scholar
  7. 7.
    V. E. Kamskaya, Biol. Nauki, No. 6, 36 (2016).Google Scholar
  8. 8.
    E. S. de Alvarenga, Univ. Fed. Viçosa, 91 (2011).Google Scholar
  9. 9.
    V. P. Kurchenko, S. V. Buga, N. V. Petrashkevich, et al., Tr. BGU, 11 (2016).Google Scholar
  10. 10.
    A. A. Murav’ev, Candidate’s Dissertation in Chemistry (Moscow, 2017).Google Scholar
  11. 11.
    D. A. Wahl, Eur. Cells Mater., No. 11, 43 (2006).Google Scholar
  12. 12.
    A. O. Bolarinwa, School Chem. Eng., 220 (2010).Google Scholar
  13. 13.
    Cuneyt A. Tas, J. Am. Ceram. Soc., 1200 (2016).Google Scholar
  14. 14.
    B. B. Parekh and M. J. Joshi, J. Pure Appl. Phys. 43, 675 (2005).Google Scholar
  15. 15.
    S. V. Dorozhkin, Materials, No. 2, 399 (2009).Google Scholar
  16. 16.
    V. B. Suryawanshi and R. T. Chaudhari, J. Mater. Sci., 6 (2014).Google Scholar
  17. 17.
    S. Gurbhinder, J. Miner. Mater. Charact. Eng. 10, 727 (2011).Google Scholar
  18. 18.
    N. V. Petrakova, Candidate’s Dissertation in Technical Science (Moscow, 2014).Google Scholar
  19. 19.
    A. V. Knyazev and E. N. Bulanov, Vestn. Nizhegorodsk. Univ. Im. N.I. Lobachevskogo 5 (1), 88 (2012).Google Scholar
  20. 20.
    N. V. Bakunova, S. M. Barinov, V. S. Komlev, et al., Nauchn. Ved., Ser. Mat., No. 11 (106), 173 (2011).Google Scholar
  21. 21.
    A. N. Gurin, Candidate’s Dissertation in Medical Science (Moscow, 2009).Google Scholar
  22. 22.
    T. V. Safronova, P. A. Seichenko, and V. I. Putlyaev, Steklo Keram., No. 8, 34 (2012).Google Scholar
  23. 23.
    R. R. Izmailov, O. A. Golovanova, Y. V. Tserikh, et al., Russ. J. Inorg. Chem. 61, 817 (2016).  https://doi.org/10.1134/S0036023616070081 CrossRefGoogle Scholar
  24. 24.
    S. Sagadevan, J. Phys. Sci. 8, 1639 (2013).Google Scholar
  25. 25.
    A. P. Solonenko and O. A. Golovanova, Russ. J. Inorg. Chem. 58, 1420 (2013).  https://doi.org/10.1134/S0036023614010173 CrossRefGoogle Scholar
  26. 26.
    L. Jiang, Carbohydr. Polym. 74, 680 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Omsk State UniversityOmskRussia

Personalised recommendations