Russian Journal of Inorganic Chemistry

, Volume 64, Issue 7, pp 890–893 | Cite as

Phase Formation in the Ternary System Nd2S3–Ga2S3–EuS

  • I. B. BakhtiyarlyEmail author
  • R. D. Kurbanova
  • A. S. AbdullaevaEmail author
  • A. B. Aliev
  • F. M. Mamedova


The ternary system Nd2S3–Ga2S3–EuS was studied by physicochemical analysis methods. The projection of the liquidus surface was constructed, and the boundaries of the glass formation region were found. It was determined that the ternary system consists of ten fields of primary crystallization of individual phases and the glass formation region. The thermolysis of the synthesized glasses was investigated, and their IR spectra were recorded. In the course of the thermolysis in an inert atmosphere, the glass (Ga2S3)0.70(Nd2S3)0.25(EuS)0.05 softens at 1010 K and then crystallizes at 1110 K. The mass loss proves that the exothermic events observed in the temperature range 1145–1225 K are related to stage-by-stage glass decomposition.


glass formation chalcogenides ternary system phase formation components IR spectra lanthanides 



  1. 1.
    A. V. Kertman, Soros. Obraz. Zh. 6, 93 (2000).Google Scholar
  2. 2.
    Yu. S. Tveryanovich, Glass Phys. Chem. 29, 166 (2003).CrossRefGoogle Scholar
  3. 3.
    E. N. Borisov, V. B. Smirnov, A. S. Tveryanovich, and Yu. S. Tveryanovich, J. Non-Cryst. Solids, 326327, 316 (2003).CrossRefGoogle Scholar
  4. 4.
    N. V. Kychkova, Candidate’s Dissertation in Chemistry (Tyumen’, 2006).Google Scholar
  5. 5.
    S. A. Kozyukhin, Candidate’s Dissertation in Chemistry (Moscow, 2007).Google Scholar
  6. 6.
    T. Yu. Ivanova, A. A. Man’shina, A. V. Kurochkin, et al., J. Non-Cryst. Solids 298, 7 (2002).CrossRefGoogle Scholar
  7. 7.
    K. D. Tsendin and N. A. Bogolovskiy, Semiconductors 46, 559 (2012).CrossRefGoogle Scholar
  8. 8.
    A. S. Vasilyeva, E. N. Borisov, S. A. Klotchenko, et al., Glass Phys. Chem. 40, 467 (2014).CrossRefGoogle Scholar
  9. 9.
    A. A. Man’shina, A. V. Kurochkin, S. V. Degtyarev, et al., Proc. SPIE—Int. Soc. Opt. Eng. 4429, 80 (2001).Google Scholar
  10. 10.
    O. M. Aliev, O. A. Aliev, and P. G. Rustamov, Izv. Akad. Nauk SSSR, Neorg. Mater., No. 1, 22 (1987).Google Scholar
  11. 11.
    S. Barnier and M. Guittard, C. R. Acad. Sci. C 282, 461 (1976).Google Scholar
  12. 12.
    A. V. Ruseikina and O. V. Andreev, Physicochemical Analysis of Natural and Technical Systems (Tyumensk. Gos. Univ, Tyumen’, 2008), p. 127.Google Scholar
  13. 13.
    I. B. Bakhtiyarly, R. I. Kerimov, R. D. Kurbanova, and N. R. Akhmedova, Russ. J. Inorg. Chem. 59, 524 (2014).CrossRefGoogle Scholar
  14. 14.
    I. B. Bakhtiyarly, R. D. Kurbanova, R. I. Kerimov, et al., in Proceedings of the XIX International Conference “Physics of Strength and Plasticity of Materials,” Samara, Russia, June 8–11, 2015, p. 224 [in Russian].Google Scholar
  15. 15.
    I. B. Bakhtiyarly, A. S. Abdullayeva, R. J. Kurbanova, et al., Azerbaijan Chem. J, No. 3, 113 (2016).Google Scholar
  16. 16.
    R. I. Kerimov, Doctoral Dissertation in Chemistry (Inst. Chem. Additives, Natl. Acad. Sci. Azerbaijan, Baku, 2011).Google Scholar
  17. 17.
    I. Goodyear and G. A. Steigmann, Acta Crystallogr. 16, 946 (1963).CrossRefGoogle Scholar
  18. 18.
    J. W. E. Drewitt, P. S. Salmon, A. Zeidler, et al., J. Phys.: Condens. Matter 29, 225 703 (2017).Google Scholar
  19. 19.
    S. Sagadevan and E. Chandraseelan, Int. J. ChemTech. Res. 6, 4682 (2014).Google Scholar
  20. 20.
    Q. Guoshun, L. Changgui, L. Zhuobin, et al., Infrared Phys. Technol. 63, 184 (2014).CrossRefGoogle Scholar
  21. 21.
    E. I. Yarembash and A. A. Eliseev, Rare-Earth Element Chalcogenides (Nauka, Moscow, 1975).Google Scholar
  22. 22.
    I. B. Bakhtiyarly, A. S. Abdullaeva, A. M. Mirzoeva, et al., Azerb. Khim. Zh., No. 3, 82 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Nagiev Institute of Catalysis and Inorganic Chemistry, National Academy of Sciences of AzerbaijanBakuAzerbaijan

Personalised recommendations