Skip to main content
Log in

A Density-Functional Theory of CO2 Interaction with a Hafnium-Titanium Nanocluster

  • Theoretical Inorganic Chemistry
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In this research, the formation of Hfm-Tin nanocluster in six configurations of Hfm-Tin and physicochemical behavior of CO2 adsorption on Hfm-Tin nanoclusters have been studied. The formation of the Hf-CO2 and Ti-CO2 bonds has been calculated using the DFT method. The effects of CO2 adsorption on structural variations and electronic properties have been studied. The adsorption energy ΔEads, energy gap (Eg), HOMO and LUMO energies, and dipole moments have been calculated at the 6-311++G** basis set, considering the constant bond lengths of the adsorbed CO2 molecules on Hfn-Ti5-n. The geometrical optimization has been performed by the B3PW91 method. The obtained results of adsorption values allow us to suggest that Hf doping on Ti nanocluster can noticeably improve the adsorption properties of all nanocluster models. Therefore, the decrease in global hardness and energy gaps after CO2 adsorption on Hfm-Tin nanoclusters can be attributed to the increase of chemical reactivity and hence leads to the lower stability of systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. León-Plata, M. R. Coan, and J. M. Seminario, J. Mol. Model. 19, 4419 (2013).

    Article  CAS  Google Scholar 

  2. H. Akbarzadeh, H. Yaghoubi, A. Nasser Shamkhali, and F. Taherkhani, J. Phys. Chem. C 117, 26287 (2013).

    Article  CAS  Google Scholar 

  3. F. Baletto and R. Ferrando, Rev. Mod. Phys. 77, 371 (2005).

    Article  CAS  Google Scholar 

  4. Q. Zhang, J. Xie, Y. Yu, and J. Y. Lee, Nanoscale 2, 1962 (2010).

    Article  CAS  Google Scholar 

  5. C. W. Bauschlicher, Jr., J. Chem. Phys. Lett. 462, 183 (2008).

    Article  CAS  Google Scholar 

  6. J. H. Rose, J. R. Smith, F. Guinea, and J. Ferrante, Phys. Rev. B 29, 2963 (1984).

    Google Scholar 

  7. Z. Hu, J. G. Dong, J. R. Lombardi, and D. M. Lindsay, J. Phys. Chem. 97, 9263 (1993).

    Article  Google Scholar 

  8. H. Wang, H. Haouari, R. Craig, Y. Liu, J. R. Lom-bardi, and D.M. Lindsay, J. Chem. Phys. 106, 2101 (1997).

    Article  Google Scholar 

  9. M. D. Morse, J. Chem. Rev. 86, 1049 (1986).

    Article  Google Scholar 

  10. U. Frenzel, U. Hammer, H. Westje, and D. Kreisle, J. Z. Phys. D: At., Mol. Clusters, 40, 108 (1997).

    Article  Google Scholar 

  11. D. Dai, S. Roszak, and K. Balasubramanian, J. Chem. Phys. Lett. 308, 495 (1999).

    Article  Google Scholar 

  12. D. Majumdar, D. Dai, and K. Balasubramanian, J. Chem. Phys. 113, 7919 (2000).

    Article  Google Scholar 

  13. P. C. Jin, B. Han, and Z. W. Dai, and Z. J. Wu, J. Mol. Struct. (Theochem.) 680, 1 (2004).

    Article  CAS  Google Scholar 

  14. C. Liu, H. He, P. Zapol, and L. A. Curtiss, Phys. Chem. Chem. Phys.: PCCP 48, 26584 (2014).

    Google Scholar 

  15. H. Kuze and S. Okude, Open J. Phys. Chem. 1, 109 (2011).

    Article  CAS  Google Scholar 

  16. J.-Y. Zhao, Y. Zhang, F.-Q. Zhao, and X.-H. Ju, J. Phys. Chem. A 117, 12519 (2013).

    Article  CAS  Google Scholar 

  17. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  Google Scholar 

  18. A. D. Becke, J. Chem. Phys. 98, 1372 (1993).

    Article  Google Scholar 

  19. M. J. Frisch et al., Gaussian 03 (Gaussian, Pittsburgh, PA, 2003).

    Google Scholar 

  20. A. S. Ghasemi, E. Binaeian, H. A. Tayebi, and Y. Modanlou Jouybari, Int. J. Nano Dimens. 7, 247 (2016).

    Google Scholar 

  21. C. Lee, W. Yang, and R. G. Parr, J. Phys. Rev. B 37, 785 (1998).

    Google Scholar 

  22. P. K. Chattaraj and A. Poddar, J. Phys. Chem. A 103, 8691 (1999).

    Article  CAS  Google Scholar 

  23. P. Geerlings, F. De Proft, and W. Langenaeker, Chem. Rev. 103, 1793 (2003).

    Article  CAS  Google Scholar 

  24. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford Univ. Press, New York, 1989).

    Google Scholar 

  25. A. Soltani, S. Ghafouri Raz, V. Joveini Rezaei, A. Khalaji Dehno, and M. Savar, J. Appl. Surf. Sci. 263, 619 (2012).

    Article  CAS  Google Scholar 

  26. A. Soltani, N. Ahmadian, A. Mirazami, A. Masoodi, E. Tazikeh Lemeski, and A. V. Moradi, J. Appl. Surf. Sci. 261, 262 (2012).

    Article  CAS  Google Scholar 

  27. T. Koopmans, Physica, 1, 104 (1933).

    Google Scholar 

  28. Q. Sun, M. Wang, Z. Li, Y. Mad, and A. Du, Chem. Phys. Lett. 575, 59 (2013).

    Article  CAS  Google Scholar 

  29. B. Gao, J.-X. Zhao, Q.-H. Cai, X.-G. Wang, and X.-Z. Wang, J. Phys. Chem. A 115, 9969 (2011).

    Article  CAS  Google Scholar 

  30. A. Fielicke, P. Gruene, G. Meijer, and D. M. Rayner, Surf. Sci. 603, 1427 (2009).

    Article  CAS  Google Scholar 

  31. A. Soltani, N. Ahmadian, Y. Kanani, A. Dehnokhalaji, and H. Mighani, J. Appl. Surf. Sci. 258, 9536 (2012).

    Article  CAS  Google Scholar 

  32. R. G. Pearson, Inorg. Chem. 27, 734 (1988).

    Article  Google Scholar 

  33. R. G. Pearson, Hard and Soft Acids and Bases (Dowden Hurchison Ross, Stroudsburg (Pa), 1973).

    Google Scholar 

  34. R. G. Pearson, J. Am. Chem. Soc. 85, 3533 (1963).

    Article  Google Scholar 

  35. R. G. Pearson, Coord. Chem. Rev. 100, 403 (1990).

    Article  Google Scholar 

  36. A. Soltani, Z. Azmoodeh, M. Bezi Javan, E. Tazikeh Lemeski, and L. Karami, Appl. Surf. Sci. 384, 230 (2016).

    Article  CAS  Google Scholar 

  37. C.-G. Zhan, J. A. Nichols, and D. A. Dixon, J. Phys. Chem. A 107, 4184 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf Sadat Ghasemi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, A.S., Ashrafi, F. A Density-Functional Theory of CO2 Interaction with a Hafnium-Titanium Nanocluster. Russ. J. Inorg. Chem. 64, 88–97 (2019). https://doi.org/10.1134/S0036023619010108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023619010108

Keywords

Navigation