Advertisement

Russian Journal of Inorganic Chemistry

, Volume 64, Issue 1, pp 28–35 | Cite as

Antimony Complexes \({\rm{\{ }}{[2,6 - {({\bf{OMe}})_2}{{\bf{C}}_6}{{\bf{H}}_3}]_3}{\bf{SbC}}{{\bf{H}}_2}{\bf{C}}({\bf{O}}){\bf{OEt}}{\rm{\} }}_2^ + {[{\bf{H}}{{\bf{g}}_2}{{\bf{I}}_6}]^{2 - }}\) and \({\rm{\{ }}{[2,6 - {({\bf{OMe}})_2}{{\bf{C}}_6}{{\bf{H}}_3}]_3}{\bf{SbME}}{\rm{\} }}_2^ + {[{\bf{H}}{{\bf{g}}}{{\bf{I}}_4}]^{2 - }}\cdot\rm{DMSO}:\): Synthesis and Structure

  • I. V. EgorovaEmail author
  • V. V. Zhidkov
  • I. P. Grinishak
  • I. Yu. Bagryanskaya
  • N. V. Pervukhina
  • I. V. El’tsov
  • N. V. Kurat’eva
Coordination Compounds
  • 14 Downloads

Abstract

It has been established that ethyl iodoacelate and 1,4-diiodobutane alkylate triarylantimony Ar3Sb with the formation of [Ar3SbCH2C(O)OEt]+I and [Ar3Sb(CH2)4I]+I, \({[{\rm{A}}{{\rm{r}}_3}{\rm{Sb}}{({\rm{C}}{{\rm{H}}_2})_4}{\rm{I}}]^ + }{{\rm{I}}^ - },\;{[{\rm{A}}{{\rm{r}}_3}{\rm{Sb}}{({\rm{C}}{{\rm{H}}_2})_4}{\rm{SbA}}{{\rm{r}}_3}]^ {2+} }{\rm{I}}_2^ - \), where Ar = 2,6-(OMe)2C6H3. The complexes \([{\rm{A}}{{\rm{r}}_3}{\rm{SbC}}{{\rm{H}}_2}{\rm{C}}({\rm{O}}){\rm{OEt}}]_2^ + \;{[{\rm{H}}{{\rm{g}}_2}{{\rm{I}}_6}]^{2 - }}\) and \([{\rm{A}}{{\rm{r}}_3}{\rm{SbMe}}]_2^ + \;{[{\rm{Hg}}{{\rm{I}}_4}]^{2 - }}\) · DMSO have been synthesized by the reaction of [Ar3SbCH2C(O)OEt]+I and [Ar3SbMe]+I with mercury diiodide and studied by X-ray diffraction. The antimony and iodine atoms have a distorted tetrahedral coordination. The CSbC and IHgI angles are ranged within 103.28(14)°–116.68(14)°, 103.7(4)°–115.5(4)° and 98.122(9)°–125.590(12)°, 102.66(2)°–115.64(2)°, respectively.

Keywords

tris(2,6-dimethoxyphenyl) antimony ethyl iodoacetate 1,4-diiodobutane tris(2,6-dimethoxyphenyl) (ethoxycarbonylmethyl) antimony iodide tris(2,6-dimethoxyphenyl)methyl antimony iodide mercury diiodide X-ray diffraction analysis nuclear magnetic resonance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. E. Doering and A. K. Hoffmann, J. Am. Chem. Soc. 77, 521 (1955). doi  https://doi.org/10.1021/ja01608a003
  2. 2.
    M. E. Brinnand, W. J. C. Dyke, W. H. Jones, and W. J. Jones, J. Chem. Soc., 1815 (1932). doi  https://doi.org/10.1039/JR9320001815 Google Scholar
  3. 3.
    K. A. Kocheshkov, A. P. Skoldinov, and N. N. Zemlyanskii, The Methods of Organoelemental Chemistry. Antimony and Bismuth (Nauka, Moscow, 1976) [in Russian].Google Scholar
  4. 4.
    K. Issleib and B. Hamann, Z. Anorg. Allg. Chem. 339, 289 (1965). doi  https://doi.org/10.1002/zaac.19653390509
  5. 5.
    K. Issleib, B. Hamann, and L. Schmidt, Z. Anorg. Allg. Chem. 339, 298 (1965). doi  https://doi.org/10.1002/zaac.19653390510
  6. 6.
    Y.-Z. Huang and Y. Liao, Org. Chem. 56, 1381 (1991). doi  https://doi.org/10.1021/jo00004a010
  7. 7.
    Y.-Z. Huang, L.-J. Zhang, C. Chen, and Z.-G. Guo, J. Organomet. Chem. 412, 47 (1991). doi  https://doi.org/10.1016/0022-328X(91)86040-W
  8. 8.
    K. Issleib and R. Linder, Justus Liebigs Ann. Chem. 707, 120 (1967). doi  https://doi.org/10.1002/jlac.19677070119
  9. 9.
    G. Balàzs, L. Balàzs, H. J. Breunig, and E. Lork, Appl. Organomet. Chem. 16, 155 (2002). doi  https://doi.org/10.1002/aoc.255
  10. 10.
    G. Grüttner and M. Wiernik, Chem. Ber. 48, 1759 (1915). doi  https://doi.org/10.1002/cber.19150480271
  11. 11.
    M. C. Henry and G. Wittig, J. Am. Chem. Soc. 82, 563 (1960). doi  https://doi.org/10.1021/ja01488a017
  12. 12.
    D. Henning, G. Kempter, E. Ahrens, et al., Z. Chem. 7, 463 (1967). doi  https://doi.org/10.1002/zfch.19670071213
  13. 13.
    D. Henning, G. Kempter, and K.-D. Worlitzer, Z. Chem. 9, 306 (1969). doi  https://doi.org/10.1002/zfch.19690090813
  14. 14.
    L. G. Makarova and A. N. Nesmeyanov, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 617 (1945).Google Scholar
  15. 15.
    M. Hirai, J. Cho, and F. P. Gabbai, Chem.-Eur. J. 22, 6537 (2016). doi  https://doi.org/10.1002/chem.201600971
  16. 16.
    G. Wittig and K. Schwarzenbach, Justus Liebigs Ann. Chem. 650, 1 (1961). doi  https://doi.org/10.1002/jlac.19616500102
  17. 17.
    L. A. Felix, C. A. F. Oliveira, R. K. Kross, et al., J. Organomet. Chem. 603, 203 (2000). doi  https://doi.org/10.1016/S0022-328X(00)00178-9
  18. 18.
    A. P. Pakusina, Extended Abstract of Doctoral Dissertation in Chemistry (Irkutsk, 2006).Google Scholar
  19. 19.
    M. Wada, S. Miyake, S. Hayashi, et al., J. Organomet. Chem. 507 , 53 (1996). doi  https://doi.org/10.1016/0022-328X(95)05716-3
  20. 20.
    G. M. Sheldrick, SHELX-97: Programs for Crystal Structure Analysis (Release 97-2) (Univ. of Göttingen, Göttingen, 1997).Google Scholar
  21. 21.
    Cambridge Structural Database System, V. 5.38. 2016.Google Scholar
  22. 22.
    S. S. Batsanov, Russ. J. Inorg. Chem. 36, 1694 (1991).Google Scholar
  23. 23.
    I. V. Egorova, V. V. Zhidkov, I. P. Grinishak, and N. A. Rodionova, Russ. J. Gen. Chem. 86, 2484 (2016). doi  https://doi.org/10.1134/S1070363216110141
  24. 24.
    R. E. Cramer and M. J. J. Carrie, Inorg. Chem. 29, 3902 (1990). doi  https://doi.org/10.1021/ic00344a052
  25. 25.
    B. C. Smith, Infrared Spectral Interpretation: A Systematic Approach (CRC Press, Boca Raton, FL, 1998).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. V. Egorova
    • 1
    Email author
  • V. V. Zhidkov
    • 1
  • I. P. Grinishak
    • 1
  • I. Yu. Bagryanskaya
    • 2
    • 3
  • N. V. Pervukhina
    • 3
    • 4
  • I. V. El’tsov
    • 3
  • N. V. Kurat’eva
    • 3
    • 4
  1. 1.Blagoveshchensk State Pedagogical UniversityBlagoveshchenskRussia
  2. 2.Vorozhtsov Institute of Organic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Novosibirsk National Research State UniversityNovosibirskRussia
  4. 4.Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations