Advertisement

Russian Journal of Inorganic Chemistry

, Volume 63, Issue 14, pp 1772–1795 | Cite as

ZrB2/HfB2–SiC Ultra-High-Temperature Ceramic Materials Modified by Carbon Components: The Review

  • E. P. Simonenko
  • N. P. Simonenko
  • V. G. Sevastyanov
  • N. T. Kuznetsov
Article
  • 19 Downloads

Abstract

The review has been made of recent publications on modification of ZrB2/HfB2–SiC ultra-hightemperature ceramic composite materials (UHTC) by carbon components: amorphous carbon, graphite, graphene, fibers, and nanotubes. Available data have been presented on some aspects of oxidation of such materials at temperatures ≥1500°C and both at the atmospheric pressure and at the reduced oxygen partial pressure; structural features of the formed multilayer oxidized regions have been noted. It has been considered how the type and content of the carbon component and the conditions (first of all, temperature) of UHTC production affect the density, flexural strength, hardness, fracture toughness, and thermal and oxidation resistance of the modified ceramic composites.

Keywords

ultra-high temperature ceramic composite graphite carbon fibers carbon nanotubes graphene strength fracture toughness oxidation resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. V. Samsonov, Refractory Compounds: A Handbook of Properties and Applications (Metallurgizdat, Moscow, 1963). [in Russian]Google Scholar
  2. 2.
    P. Rogl and P. E. Potter, Calphad 12, 191 (1988). doi 10.1016/0364-5916(88)90021-1CrossRefGoogle Scholar
  3. 3.
    R. Rogl and H. Bittermann, J. Solid State Chem. 154, 257 (2000). doi 10.1006/jssc.2000.8846CrossRefGoogle Scholar
  4. 4.
    E. Rudy and S. Windisch, Report AFML-TR-65–2 (Air Force Materials Laboratory, Wright Patterson Air Force Base, Ohio, 1966), Part II, Vol. XIII, pp. 1–212.Google Scholar
  5. 5.
    K. P. Portnoi, V. M. Romashov, and L. I. Vyroshina, Poroshk. Metall. 91 (7), 68 (1970).Google Scholar
  6. 6.
    G. V. Samsonov, A. S. Bolgar, E. A. Guseva, et al., High Temp.–High Pressures 5, 29 (1973).Google Scholar
  7. 7.
    G. V. Samsonov and L. Ya. Markovskii, Usp. Khim. XXV, 190 (1956).Google Scholar
  8. 8.
    P. Schwarzkopf and R. Kieffer, Refractory Hard Metals: Borides, Carbides, Nitrides, and Silicides: the Basic Constituents of Cemented Hard Metals and Their Use as High-Temperature Materials (Macmillan, New York, 1953).Google Scholar
  9. 9.
    E. P. Simonenko, D. V. Sevast’yanov, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 58, 1669 (2013). doi 10.1134/S0036023613140039CrossRefGoogle Scholar
  10. 10.
    R. Savino, L. Criscuolo, G. D. Di Martino, and S. Mungiguerra, J. Eur. Ceram. Soc. 38, 2937 (2018). doi 10.1016/j.jeurceramsoc.2017.12.043CrossRefGoogle Scholar
  11. 11.
    A. Paul, J. Binner, and B. Vaidhyanathan, in Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, Ed. by W. G. Fahrenholtz, E. J. Wuchina, W. E. Lee, and Y. Zhou (Wiley-Blackwell, New York, 2014), pp. 144–166. doi 10.1002/9781118700853.ch7Google Scholar
  12. 12.
    L. Silvestroni, H.-J. Kleebe, W. G. Fahrenholtz, and J. Watts, Sci. Rep. 7, Article no. 40730 (2017). doi 10.1038/srep40730Google Scholar
  13. 13.
    S. Guo, J. Am. Ceram. Soc. 101, 2707 (2018). doi 10.1111/jace.15446CrossRefGoogle Scholar
  14. 14.
    E. Zapata-Solvas, D. Gomez-Garcia, A. Dominguez-Rodriguez, and W. E. Lee, J. Eur. Ceram. Soc. 38, 47 (2017). doi 10.1016/j.jeurceramsoc.2017.08.028CrossRefGoogle Scholar
  15. 15.
    W. G. Fahrenholtz and G. E. Hilmas, Scripta Mater. 129, 94 (2017). doi 10.1016/j.scriptamat.2016.10.018CrossRefGoogle Scholar
  16. 16.
    E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 63, 421 (2018). doi 10.1134/S0036023618040186CrossRefGoogle Scholar
  17. 17.
    F. Monteverde and R. Savino, J. Am. Ceram. Soc. 95, 2282 (2012). doi 10.1111/j.1551-2916.2012.05226.xCrossRefGoogle Scholar
  18. 18.
    X. Jin, R. He, X. Zhang, P. Hu, J. Alloys Compd. 566, 125 (2013). doi 10.1016/j.jallcom.2013.03.067CrossRefGoogle Scholar
  19. 19.
    F. Monteverde and R. Savino, J. Am. Ceram. Soc. 95, 2282 (2012). doi 10.1111/j.1551-2916.2012.05226.xCrossRefGoogle Scholar
  20. 20.
    A. Cecere, R. Savino, C. Allouis, and F. Monteverde, Int. J. Heat Mass Transfer 91, 747 (2015). doi 10.1016/j.ijheatmasstransfer.2015.08.029CrossRefGoogle Scholar
  21. 21.
    T. A. Parthasarathy, M. D. Petry, M. K. Cinibulk, et al., J. Am. Ceram. Soc. 96, 907 (2013). doi 10.1111/jace.12180CrossRefGoogle Scholar
  22. 22.
    T. H. Squire and J. Marschall, J. Eur. Ceram. Soc. 30, 2239 (2010).CrossRefGoogle Scholar
  23. 23.
    V. G. Sevastyanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 59, 1298 (2014). doi 10.1134/S0036023614110217CrossRefGoogle Scholar
  24. 24.
    V. G. Sevastyanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 60, 1360 (2015). doi 10.1134/S0036023615110133CrossRefGoogle Scholar
  25. 25.
    E. P. Simonenko, A. N. Gordeev, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 61, 1203 (2016). doi 10.1134/S003602361610017XCrossRefGoogle Scholar
  26. 26.
    V. G. Sevast’yanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 58, 1269 (2013). doi 10.1134/S003602361311017XCrossRefGoogle Scholar
  27. 27.
    V. G. Sevastyanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 59, 1361 (2014). doi 10.1134/S0036023614120250CrossRefGoogle Scholar
  28. 28.
    Yu. B. Lyamin, V. Z. Poilov, E. N. Pryamilova, et al., Russ. J. Inorg. Chem. 61, 149 (2016). doi 10.1134/S0036023616020133CrossRefGoogle Scholar
  29. 29.
    D. V. Grashchenkov, O. Yu. Sorokin, Yu. E. Lebedeva, and M. L. Vaganova, Russ. J. Appl. Chem. 88, 386 (2015).CrossRefGoogle Scholar
  30. 30.
    P. S. Sokolov, A. V. Arakcheev, I. L. Mikhal’chik, et al., Refract. Ind. Ceram. 58, 46 (2017). doi 10.1007/s11148-017-0052-9CrossRefGoogle Scholar
  31. 31.
    L. A. Chevykalova, I. Yu. Kelina, I. L. Mikhal’chik, et al., Refract. Ind. Ceram. 54, 455 (2014).CrossRefGoogle Scholar
  32. 32.
    D. V. Kolovertnov and I. B. Ban’kovskaya, Glass Phys. Chem. 41, 324 (2015).CrossRefGoogle Scholar
  33. 33.
    C. Wei, S. Li, K. Yin, et al., Ceram. Int. 44, 4385 (2018). doi 10.1016/j.ceramint.2017.12.036CrossRefGoogle Scholar
  34. 34.
    S. Guo, J. Ceram. Soc. Jpn. 124, 166 (2016). doi 10.2109/jcersj2.15190CrossRefGoogle Scholar
  35. 35.
    C. Wei and C. Ye, Int. J. Refract. Met. Hard Mater. 51, 233 (2015). doi 10.1016/j.ijrmhm.2015.04.023CrossRefGoogle Scholar
  36. 36.
    L.-L. Wang, J. Liang, G.-D. Fang, et al., Ceram. Int. 40, 5255 (2014). doi 10.1016/j.ceramint.2013.10.097CrossRefGoogle Scholar
  37. 37.
    C. Wei, X. Zhang, and S. Li, Ceram. Int. 40, 5001 (2014). doi 10.1016/j.ceramint.2013.08.070CrossRefGoogle Scholar
  38. 38.
    M. M. Opeka, I. G. Talmy, and J. A. Zaykoski, J. Mater. Sci. 39, 5887 (2004). doi 10.1023/B:JMSC.0000041686.21788.77CrossRefGoogle Scholar
  39. 39.
    J. Han, P. Hu, X. Zhang, et al., Compos. Sci. Technol. 68, 799 (2008). doi 10.1016/j.compscitech.2007.08.017CrossRefGoogle Scholar
  40. 40.
    T. A. Parthasarathy, R. A. Rapp, M. Opeka, and M. K. Cinibulk, J. Am. Ceram. Soc. 95, 338 (2012). doi 10.1111/j.1551-2916.2011.04927.xCrossRefGoogle Scholar
  41. 41.
    E. Eakins, D. D. Jayaseelan, and W. E. Lee, Metall. Mater. Trans. A. 42A, 878 (2011). doi 10.1007/s11661-010-0540-8CrossRefGoogle Scholar
  42. 42.
    D. Gao, Y. Zhang, J. Fu, et al., Corros. Sci. 52, 3297 (2010). doi 10.1016/j.corsci.2010.06.004CrossRefGoogle Scholar
  43. 43.
    K. S. Cissel and E. Opila, J. Am. Ceram. Soc. 101, 1765 (2018). doi 10.1111/jace.15298CrossRefGoogle Scholar
  44. 44.
    W. G. Fahrenholtz, J. Am. Ceram. Soc. 90, 143 (2007). doi 10.1111/j.1551-2916.2006.01329.xCrossRefGoogle Scholar
  45. 45.
    J. Li, T. J. Lenosky, C. J. Foörst, and S. Yip, J. Am. Ceram. Soc. 91, 1475 (2008). doi 10.1111/j.1551-2916.2008.02319.xCrossRefGoogle Scholar
  46. 46.
    A. Rezaie, W. G. Fahrenholtz, and G. E. Hilmas, J. Eur. Ceram. Soc. 33, 413 (2013). doi 10.1016/j.jeurceramsoc. 2012.09.016CrossRefGoogle Scholar
  47. 47.
    H. Jin, S. Meng, X. Zhang, et al., J. Am. Ceram. Soc. 99, 2474 (2016). doi 10.1111/jace.14232CrossRefGoogle Scholar
  48. 48.
    Q. N. Nguyen, E. J. Opila, and R. C. Robinson, J. Electrochem. Soc. 151, B558 (2004). doi 10.1149/1.1786929CrossRefGoogle Scholar
  49. 49.
    C.-L. Zhou, Y.-Y. Wang, Z.-Q. Cheng, et al., Adv. Mat. Res. 105–106, 199 (2010). doi 10.4028/www.scientific. net/AMR.105-106.199Google Scholar
  50. 50.
    H. Zhang, Y. Yan, Z. Huang, et al., J. Am. Ceram. Soc. 92, 1599 (2009). doi 10.1111/j.1551-2916.2009.03039.xCrossRefGoogle Scholar
  51. 51.
    X.-J. Zhou, G.-J. Zhang, Y.-G. Li, et al., Mater. Lett. 61, 960 (2007). doi 10.1016/j.matlet.2006.06.024CrossRefGoogle Scholar
  52. 52.
    S. Zhou, Z. Wang, X. Sun, and J. Han, Mater. Chem. Phys. 122, 470 (2010). doi 10.1016/j.matchemphys. 2010.03.028CrossRefGoogle Scholar
  53. 53.
    X. Sun, X. Zhang, Z. Wang, et al., Key Eng. Mater. 434–435, 185 (2010). doi 10.4028/www.scientific. net/KEM.434-435.185CrossRefGoogle Scholar
  54. 54.
    W.-M. Guo, Y. You, G.-J. Zhang, et al., J. Eur. Ceram. Soc. 35, 1985 (2015). doi 10.1016/j.jeurceramsoc. 2014.12.026CrossRefGoogle Scholar
  55. 55.
    X. Zhang, Z. Wang, X. Sun, et al., Mater. Lett. 62, 4360 (2008). doi 10.1016/j.matlet.2008.07.027CrossRefGoogle Scholar
  56. 56.
    Z. Wang, S. Wang, X. Zhang, et al., J. Alloys Compd. 484, 390 (2009). doi 10.1016/j.jallcom.2009.04.109CrossRefGoogle Scholar
  57. 57.
    H. Jin, S. Meng, Q. Yang, and Y. Zhu, Ceram. Int. 39, 5591 (2013). doi 10.1016/j.ceramint.2012.12.074CrossRefGoogle Scholar
  58. 58.
    H. Jin, S. Meng, Y. Zhu, and Y. Zhou, Mater. Des. 50, 509 (2013). doi 10.1016/j.matdes.2013.03.025CrossRefGoogle Scholar
  59. 59.
    H. Jin, S. Meng, Q. Yang, and Y. Zhu, Ceram. Int. 39, 5591 (2013). doi 10.1016/j.ceramint.2012.12.074CrossRefGoogle Scholar
  60. 60.
    X. H. Zhang, Z. Wang, P. Hu, et al., Scripta Mater. 61, 809 (2009). doi 10.1016/j.scriptamat.2009.07.001CrossRefGoogle Scholar
  61. 61.
    Z. Wang, C. Hong, X. Zhang, et al., Mater. Chem. Phys. 113, 338 (2009). doi 10.1016/j.matchemphys. 2008.07.095CrossRefGoogle Scholar
  62. 62.
    S. Zhou, Z. Wang, and W. Zhang, J. Alloys Compd. 485, 181 (2009). doi 10.1016/j.jallcom.2009.05.126CrossRefGoogle Scholar
  63. 63.
    P. Hu, Z. Wang, and X. Sun, Int. J. Refract. Met. Hard Mater. 28, 280 (2010). doi 10.1016/j.ijrmhm.2009. 10.013CrossRefGoogle Scholar
  64. 64.
    Z. Wang, Q. Qu, Z. Wu, and G. Shi, J. Alloys Compd. 509, 6871 (2011). doi 10.1016/j.jallcom.2011.03.163CrossRefGoogle Scholar
  65. 65.
    L. Wang, J. Liang, and G. Fang, J. Alloys Compd. 619, 145 (2015). doi 10.1016/j.jallcom.2014.08.255CrossRefGoogle Scholar
  66. 66.
    J. Niu, H. Jin, S. Meng, et al., Ceram. Int. 42, 5562 (2016). doi 10.1016/j.ceramint.2015.12.031CrossRefGoogle Scholar
  67. 67.
    H. Jin, S. Meng, X. Zhang, et al., J. Eur. Ceram. Soc. 36, 1855 (2016). doi 10.1016/j.jeurceramsoc. 2016.02.040CrossRefGoogle Scholar
  68. 68.
    Z. Wang, Z. Wu, and G. Shi, Mater. Sci. Eng., A. A528, 2870 (2011). doi 10.1016/j.msea.2010.12.079Google Scholar
  69. 69.
    L. Wang, D. Kong, G. Fang, and J. Liang, Int. J. Appl. Ceram. Technol. 14, 31 (2017). doi 10.1111/ijac.12613CrossRefGoogle Scholar
  70. 70.
    R. Zhang, X. Cheng, D. Fang, et al., Mater. Des. 52, 17 (2013). doi 10.1016/j.matdes.2013.05.045CrossRefGoogle Scholar
  71. 71.
    X. Chen, X. Peng, Z. Wei, et al., Mater. Des. 126, 91 (2017). doi 10.1016/j.matdes.2017.04.001CrossRefGoogle Scholar
  72. 72.
    X. Zhang, Z. Wang, X. Sun, et al., Int. J. Mod. Phys. B 23, 1160 (2009). doi 10.1142/S0217979209060622CrossRefGoogle Scholar
  73. 73.
    V. Zamora, M. Nygren, F. Guiberteau, and A. L. Ortiz, Ceram. Int. 40, 11457 (2014). doi 10.1016/j.ceramint. 2014.03.130CrossRefGoogle Scholar
  74. 74.
    M. Shahedi Asl, M. J. Zamharir, Z. Ahmadi, and S. Parvizi, Mater. Sci. Eng., A 716, 99 (2018). doi 10.1016/j.msea.2018.01.038CrossRefGoogle Scholar
  75. 75.
    M. Shahedi Asl, Ceram. Int. 44, 6935 (2018). doi 10.1016/j.ceramint.2018.01.122CrossRefGoogle Scholar
  76. 76.
    Y. H. Cheng, Y. Qi, P. Hu, et al., J. Am. Ceram. Soc. 99, 2131 (2016). doi 10.1111/jace.14192CrossRefGoogle Scholar
  77. 77.
    E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 61, 1483 (2016). doi 10.1134/S0036023616120172CrossRefGoogle Scholar
  78. 78.
    E. P. Simonenko, N. P. Simonenko, D. V. Sevastyanov, et al., Russ. J. Inorg. Chem. 61, 1649 (2016). doi 10.1134/S0036023616130039CrossRefGoogle Scholar
  79. 79.
    F. Li, Y. Cao, J. Liu, et al., Ceram. Int. 43, 7743 (2017). doi 10.1016/j.ceramint.2017.03.080CrossRefGoogle Scholar
  80. 80.
    Y. Cao, H. Zhang, F. Li, et al., Ceram. Int. 41, 7823 (2015). doi 10.1016/j.ceramint.2015.02.117CrossRefGoogle Scholar
  81. 81.
    E. P. Simonenko, N. P. Simonenko, E. K. Papynov, et al. Russ. J. Inorg. Chem. 63, 1 (2018). doi 10.1134/S0036023618010187CrossRefGoogle Scholar
  82. 82.
    N. T. Kuznetsov, V. G. Sevastyanov, E. P. Simonenko, and N. P. Simonenko, RU Patent No. 2618567, 04.05.2017.Google Scholar
  83. 83.
    E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 63, 1345, (2018) doi 10.1134/S0036023618100170CrossRefGoogle Scholar
  84. 84.
    E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 63, 1484, (2018) doi 10.1134/S0036023618110177CrossRefGoogle Scholar
  85. 85.
    F. Yang, X. Zhang, J. Han, and S. Du, Mater. Lett. 62, 2925 (2008). doi 10.1016/j.matlet.2008.01.076CrossRefGoogle Scholar
  86. 86.
    F. Yang, X. Zhang, J. Han, and S. Du, Mater. Des. 29, 1817 (2008). doi 10.1016/j.matdes.2008.03.011CrossRefGoogle Scholar
  87. 87.
    F. Yang, X. Zhang, J. Han, and S. Diu, J. Compos. Mater. 44, 953 (2010). doi 10.1177/0021998309346545CrossRefGoogle Scholar
  88. 88.
    F.-Y. Yang, X.-H. Zhang, and S.-Y. Du, Key Eng. Mater. 368–372, 1753 (2008). doi 10.4028/www.scientific. net/KEM.368-372.1753CrossRefGoogle Scholar
  89. 89.
    F. Yang, X. Zhang, J. Han, and S. Du, J. Alloys Compd. 472, 395 (2009). doi 10.1016/j.jallcom. 2008.04.092CrossRefGoogle Scholar
  90. 90.
    S. Guo, K. Naito, and Y. Kagawa, Ceram. Int. 39, 1567 (2013). doi 10.1016/j.ceramint.2012.07.108CrossRefGoogle Scholar
  91. 91.
    S. Guo, Ceram. Int. 39, 5733 (2013). doi 10.1016/j.ceramint.2012.12.091CrossRefGoogle Scholar
  92. 92.
    M. Shahedi Asl, F. Golmohammadi, M. Ghassemi Kakroudi, and M. Shokouhimehr, Ceram. Int. 42, 4498 (2016). doi 10.1016/j.ceramint.2015.11.139CrossRefGoogle Scholar
  93. 93.
    M. Shahedi Asl, M. G. Kakroudi, I. Farahbakhsh, et al., Ceram. Int. 42, 18612 (2016). doi 10.1016/j.ceramint. 2016.08.205CrossRefGoogle Scholar
  94. 94.
    K. Gui, P. Hu, W. Hong, et al., J. Alloys Compd. 706, 16 (2017). doi 10.1016/j.jallcom.2017.02.227CrossRefGoogle Scholar
  95. 95.
    P. Hu, K. Gui, W. Hong, et al., J. Eur. Ceram. Soc. 37, 2317 (2017). doi 10.1016/j.jeurceramsoc.2017.02.008CrossRefGoogle Scholar
  96. 96.
    W. Hong, K. Gui, P. Gui, et al., J. Adv. Ceram. 6, 110 (2017). doi 10.1007/s40145-017-0223-7CrossRefGoogle Scholar
  97. 97.
    Z. Balak, M. Shahedi Asl, M. Azizieh, et al., Ceram. Int. 43, 2209 (2017). doi 10.1016/j.ceramint. 2016.11.005CrossRefGoogle Scholar
  98. 98.
    M. Shahedi Asl, Ceram. Int. 43, 15047 (2017). doi 10.1016/j.ceramint.2017.08.030CrossRefGoogle Scholar
  99. 99.
    Z. Balak, M. Azizieh, H. Kafashan, et al., Mater. Chem. Phys. 196, 333 (2017). doi 10.1016/j.matchemphys.2017.04.062CrossRefGoogle Scholar
  100. 100.
    Z. Nasiri, M. Mashhadi, and A. Abdollahi, Int. J. Refract. Met. Hard Mater. 51, 216 (2015). doi 10.1016/j.ijrmhm.2015.04.005CrossRefGoogle Scholar
  101. 101.
    W.-B. Tian, Y.-M. Kan, G.-J. Zhang, et al., Mater. Sci. Eng., A487, 568 (2008). doi 10.1016/j.msea.2007.11.027CrossRefGoogle Scholar
  102. 102.
    M. Shahedi Asl, I. Farahbakhsh, and B. Nayebi, Ceram. Int. 42, 1950 (2016). doi 10.1016/j.ceramint. 2015.09.165CrossRefGoogle Scholar
  103. 103.
    J. Lin, Y. Huang, H. Zhang, et al., Ceram. Int. 41, 15261 (2015). doi 10.1016/j.ceramint.2015.07.207CrossRefGoogle Scholar
  104. 104.
    A. Nisar, S. Ariharan, and K. Balani, Ceram. Int. 43, 13483 (2017). doi 10.1016/j.ceramint.2017.07.053CrossRefGoogle Scholar
  105. 105.
    A. Nisar, S. Ariharan, T. Venkateswaran, et al., Carbon 111, 269 (2017). doi 10.1016/j.carbon.2016.10.002CrossRefGoogle Scholar
  106. 106.
    A. Nisar and K. Balani, Coatings 7, 110/1 (2017). doi 10.3390/coatings7080110Google Scholar
  107. 107.
    M. Shahedi Asl and M. Ghassemi Kakroudi, Mater. Sci. Eng., A. 625, 385 (2015). doi 10.1016/j.msea.2014.12.028CrossRefGoogle Scholar
  108. 108.
    X. Zhang, Y. An, J. Han, et al., RSC Adv. 5, 47060 (2015). doi 10.1039/C5RA05922DCrossRefGoogle Scholar
  109. 109.
    Y. An, X. Xu, and K. Gui, Ceram. Int. 42, 14066 (2016). doi 10.1016/j.ceramint.2016.06.014CrossRefGoogle Scholar
  110. 110.
    B. Zhang, X. Zhang, C. Hong, et al., ACS Appl. Mater. Interfaces 8, 11675 (2016). doi 10.1021/acsami.6b00822CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. P. Simonenko
    • 1
  • N. P. Simonenko
    • 1
  • V. G. Sevastyanov
    • 1
  • N. T. Kuznetsov
    • 1
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations