Russian Journal of Inorganic Chemistry

, Volume 63, Issue 14, pp 1796–1811 | Cite as

Crystal Chemistry of Lithium Intermetallic Compounds: A Survey

  • G. D. Ilyushin


The structural chemistry of lithium intermetallic compounds that are formed in Li–М binary systems where М = Ca, Sr, Ba, Mg, Zn, Cd, and Hg is surveyed. It is for the first time that the crystal structures of intermetallic compounds are classified in terms of polyhedral precursor metal clusters (in the program package ToposPro). The precursor metal clusters of crystal structures are identified using the algorithms of partitioning structural graphs into cluster structures and via the design of the basal 3D network of the structure in the form of a graph whose nodes correspond to the positions of the centers of precursor clusters. Tetrahedral precursor metal clusters M4 are identified for the crystal structures LiZn3-oC4, LiMg3-hP2, LiCd3-hP2, LiHg3-hP8, (LiMg3)(Li2Mg2)-tI16, Li2Zn2-cF16, Li2Cd2-cF16, Li2Hg2-cP2, Li3Cd-cF4, and Li3Hg-cF16; tetrahedral metal clusters M4 are found for the framework structures with spacer atoms Sr(Li2Sr2)-tP20, Ca2(Li4)-cF24, and Ca2(Li4)-cP12; tetrahedral metal clusters M4 and rings M6, for framework structures Ba3Li2(Li10)-hP30 and Ba3Li2(Li4In6)-hP30; icosahedral metal clusters M13 for the framework structure Li(Zn13)-cF112; bilayer tetrahedral metal clusters 0@М4@M22 for the framework structure Li23Sr6-cF116; and deltahedra М17 and deltahedra М30, for framework structures Sr4Li14 [Sr(Sr4Li12)] [(Sr2 (Sr8Li18)]-tI252 and Ba4Li14 [Ba(Ba4Li12)][(Ba2 (Ba8Li18)]-tI252. The scenario of crystal structure self-assembly from precursor metal clusters S30 in intermetallic compounds is reconstituted as: primary chain S31→ microlayer S32→ microframework S33.


intermetallic compounds classification geometric and topologic analysis metal clusters self-assembly of crystal structures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Villars and K. Cenzual, Pearson’s Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) (Materials Park, OH, ASM).Google Scholar
  2. 2.
    Inorganic Crystal Structure Database (ICSD) (Fachinformationszentrum, Karlsruhe).Google Scholar
  3. 3.
    W. Pearson, The Crystal Chemistry and Physics of Metals and Alloys (Wiley, New York, 1972).Google Scholar
  4. 4.
    A. I. Kitaigorodskii, Mixed Crystals (Nauka, Moscow, 1983) [in Russian].Google Scholar
  5. 5.
    A. F. Wells, Structural Inorganic Chemistry (Oxford Univ. Press, London, 1984).Google Scholar
  6. 6.
    P. I. Kripyakevich, Structure Types of Intermetallic Compounds (Nauka, Moscow, 1977) [in Russian]Google Scholar
  7. 7.
    T. G. Akhmetshina, V. A. Blatov, D. M. Proserpio, and A. P. Shevchenko, Acc. Chem. Res. 51, 21 (2018). doi 10.1021/acs.accounts.7b00466CrossRefGoogle Scholar
  8. 8.
    A. A. Pankova, T. G. Akhmetshina, V. A. Blatov, and D. M. Proserpio, Inorg. Chem. 54, 6616 (2015). doi 10.1021/acs.inorgchem.5b00960CrossRefGoogle Scholar
  9. 9.
    J. Dshemuchadse and W. Steurer, Inorg. Chem. 54, 1120 (2015). doi 10.1021/ic5024482CrossRefGoogle Scholar
  10. 10.
    J. Dshemuchadse and W. Steurer, Acta Crystallorg., Sect. A 71, 335 (2015). doi 10.1107/S2053273315004064CrossRefGoogle Scholar
  11. 11.
    G. D. Ilyushin, Crystallogr. Repts. 62, 670 (2017). doi 10.1134/S106377451705008XCrossRefGoogle Scholar
  12. 12.
    G. D. Ilyushin, Crystallogr. Repts. 63, 543 (2018). doi 10.1134/S1063774518040089CrossRefGoogle Scholar
  13. 13.
    G. D. Ilyushin, Russ. J. Inorg. Chem. 62, 1730 (2017). doi 10.1134/S0036023617130046CrossRefGoogle Scholar
  14. 14.
    V. A. Blatov, A. P. Shevchenko, and D. M. Proserpio, Cryst. Growth Des. 14, 3576 (2014). doi 10.1021/cg500498kCrossRefGoogle Scholar
  15. 15.
    G. D. Ilyushin, Modeling of Self-Organization Processes in Crystal-Forming Systems (URSS, Moscow, 2003) [in Russian].Google Scholar
  16. 16.
    G. D. Ilyushin, Struc. Chem. 20, 975 (2012). doi 10.1007/s11224-012-0014-2Google Scholar
  17. 17.
    G. D. Ilyushin, Russ. J. Inorg. Chem. 61, 1727 (2016). doi 10.1134/S0036023616140023CrossRefGoogle Scholar
  18. 18.
    A. Pankova, V. Blatov, G. Ilyushin, and D. Proserpio, Inorg. Chem. 52, 13094 (2013). doi 10.1021/ic4019713CrossRefGoogle Scholar
  19. 19.
    V. A. Blatov, G. D. Ilyushin, and D. M. Proserpio, Chem. Mater. 25, 412 (2013). doi 10.1021/cm303528uCrossRefGoogle Scholar
  20. 20.
    V. A. Blatov, G. D. Ilyushin, and D. M. Proserpio, Inorg. Chem. 49, 1811 (2010). doi 10.1021/ic9021933CrossRefGoogle Scholar
  21. 21.
    B. Olinger and J.W. Shaner, Science 219, 1971 (1983). doi 10.1126/science.219.4588.1071CrossRefGoogle Scholar
  22. 22.
    C. S. Barrett, Acta Cryst. 9, 671 (1956). doi 10.1107/S0365110X56001790CrossRefGoogle Scholar
  23. 23.
    R. W. Lynch and H. G. J. Drickamer, Phys. Chem. Solids 26, 63 (1965). doi 10.1016/0022-3697(65)90073-9CrossRefGoogle Scholar
  24. 24.
    C. B. Walker and M. Marezio, Acta Metall. 7, 769 (1959). doi 10.1016/0001-6160(59)90090-2CrossRefGoogle Scholar
  25. 25.
    R. S. Amand and B. C. Giessen, J. Less-Common Met. 58, 161 (1978). doi 10.1016/0022-5088(78)90197-2CrossRefGoogle Scholar
  26. 26.
    M. Hanfland, K. Syassen, N. E. Christensen, and D. L. Novikov, Nature 408, 174 (2000). doi 10.1038/35041515CrossRefGoogle Scholar
  27. 27.
    V. Pavlyuk, I. Chumak, L. Akselrud, S. Lidin, H. Ehrenberg, Acta Cryst., Sect. B 70, 212 (2014). doi 10.1107/S2052520613030709CrossRefGoogle Scholar
  28. 28.
    N. Vigier, A. C. Den, C. Fillaux, et al., Chem. Mater. 20, 3199 (2008). doi 10.1021/cm8001783CrossRefGoogle Scholar
  29. 29.
    N. Karlsson, J. Inst. Metals 79, 391 (1951).Google Scholar
  30. 30.
    J. Huot, S. Bouaricha, S. Boily, et al., J. Alloys Compd. 266, 307 (1998). doi 10.1016/S0925-8388(97)00440-4CrossRefGoogle Scholar
  31. 31.
    E. Zintl and A. Schneider, Z. Elektrochem. 41, 294 (1935).Google Scholar
  32. 32.
    E. Zintl and A. Schneider, Z. Elektrochem. Ang. Phys. Chem. 41, 771 (1935).Google Scholar
  33. 33.
    F. H. Herbstein and B. L. Averbach, Acta Crystallogr. 9, 91 (1956).CrossRefGoogle Scholar
  34. 34.
    K. Kuriyama, S. Saito, and K. Iwamura, J. Phys. Chem. Solids 40, 457 (1979). doi 10.1016/0022-3697(79)90062-3CrossRefGoogle Scholar
  35. 35.
    M. Zwilling, P. C. Schmidt, and A. Weiss, Apppl. Phys. 16, 255 (1978). doi 10.1007/BF00885121CrossRefGoogle Scholar
  36. 36.
    H. Pauly, A. Weiss, and H. Witte, Z. Metall. 59, 554 (1968).Google Scholar
  37. 37.
    V. Smetana, L. Kienle, V. Duppel, and A. Simon, Inorg. Chem. 54, 733 (2015). doi 10.1021/ic5010165CrossRefGoogle Scholar
  38. 38.
    D. Fischer and M. Z. Jansen, Anorg. Allg. Chem. 629, 1934 (2003). doi 10.1002/zaac.200300179CrossRefGoogle Scholar
  39. 39.
    R. Nesper and G. J. Miller, J. Alloys Compd 197, 109 (1993). doi 10.1016/0925-8388(93)90628-ZCrossRefGoogle Scholar
  40. 40.
    V. Smetana, V. Babizhet’sky, C. Hoch, and A. Simon, Z. Kristallogr. 221, 434 (2006). doi 10.1524/ncrs.2006.0142Google Scholar
  41. 41.
    V. Smetana, G. V. Vajenine, L. Kienle, V. Duppel, A. J. Simon, Solid State Chem. 183, 1767 (2010). doi 10.1016/j.jssc.2010.05.021CrossRefGoogle Scholar
  42. 42.
    D. Fischer and M. Z. Jansen, Anorg. Allg. Chem. 636, 1917 (2010). doi 10.1002/zaac.201000222CrossRefGoogle Scholar
  43. 43.
    M. Wendorff and C. Roehr, J. Alloys Compd 421, 24 (2006). doi 10.1016/j.jallcom.2005.11.016CrossRefGoogle Scholar
  44. 44.
    F. E. Wang, A. J. King, and F. A. J. Kanda, Phys. Chem. 66, 2142 (1962). doi 10.1021/j100817a016CrossRefGoogle Scholar
  45. 45.
    V. Smetana, V. Babizhet’sky, G. V. Vajenine, C. Hoch, and A. Simon, Inorg. Chem. 46, 5425 (2007). doi 10.1021/ic070249iCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”Russian Academy of SciencesMoscowRussia
  2. 2.International Research Center for Theoretical Materials ScienceSamara State Technical UniversitySamaraRussia

Personalised recommendations