Advertisement

Russian Journal of Inorganic Chemistry

, Volume 63, Issue 13, pp 1689–1703 | Cite as

Structural Features of Uranyl Hydroxylaminate and Oximate Complexes

  • A. G. BeirakhovEmail author
  • A. V. Rotov
Synthesis and Properties of Inorganic Compounds
  • 8 Downloads

Abstract

On the basis of the currently available uranyl complexes with hydroxylamine and its N-substituted derivatives and oximes, the coordination modes of the ligands and structural features of such complexes have been considered with the aim of determining general trends for this new family of uranium(VI) compounds. All the uranyl oximate and hydroxylaminate complexes contain a deprotonated ligand coordinated to the central atom through the nitrogen and oxygen atoms to form a stable three-membered chelate ring. Depending on the composition, these compounds can be divided into two large groups: complexes with tris(chelate) and bis(chelate) structural moieties.

Keywords

uranium(VI) complex ligand coordination mode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. C. Burns, in: Structural Chemistry of Inorganic Actinide Compounds (Elsevier, Amsterdam, 2007), p.1.CrossRefGoogle Scholar
  2. 2.
    K. A. Kubatko, T. Z. Forbes, A. L. Klingensmith, et al., Inorg. Chem. 46, 3657 (2007).CrossRefGoogle Scholar
  3. 3.
    W. A. Jong, E. Apra, and T. L. Windus, J. Phys. Chem. A 109, 11568 (2005).CrossRefGoogle Scholar
  4. 4.
    A. G. Beirakhov, I. M. Orlova, Yu. N. Mikhailov, et al., Koord. Khim. 24, 276 (1998).Google Scholar
  5. 5.
    A. G. Beirakhov, I. M. Orlova, Yu. N. Mikhailov, et al., The Chemistry of Uranium, Ed. by B. N. Laskorin and B. F. Myasoedov (Nauka, Moscow, 1989) [in Russian].Google Scholar
  6. 6.
    A. G. Beirakhov, I. M. Orlova, and Yu. N. Mikhailov, Russ. J. Inorg. Chem. 59, 1679 (2014). doi 10.1134/S0036023614140022CrossRefGoogle Scholar
  7. 7.
    C. W. Belock, A. Cetin, N. V. Barone, et al., Inorg. Chem. 47, 7114 (2008).CrossRefGoogle Scholar
  8. 8.
    V. Yu. Kukushkin and A. J. L. Pombeiro, Coord. Chem. Rev. 181, 147 (1999).CrossRefGoogle Scholar
  9. 9.
    M. Ponikvar and J. F. Liebman, in The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids, Ed. by Z. Rappoport and J. F. Liebman, The Chemistry of Functional Groups (Wiley, 2009), p.515.Google Scholar
  10. 10.
    C. W. Belock, A. Cetin, N. V. Barone, et al., Inorg. Chem. 47, 7114 (2008).CrossRefGoogle Scholar
  11. 11.
    K. Wieghardt, E. Hofer, W. Holzbach, et al., Inorg. Chem. 19, 2927 (1980).CrossRefGoogle Scholar
  12. 12.
    J. J. Smee, J. A. Epps, G. Teissedre, et al., Inorg. Chem. 46, 9827 (2007).CrossRefGoogle Scholar
  13. 13.
    S. G. Sakharov, in: Physical Organometallic Chemistry, vol. 4: Fluxional Organometallic and Coordination Compounds, Ed. by M. Gielen, R. Willem and B. Wrackmeyer (Wiley, 2004), p.85.Google Scholar
  14. 14.
    R. N. Shchelokov, Yu. N. Mikhailov, I. M. Orlova, et al., J. Less Common Met. 121, 651 (1985).CrossRefGoogle Scholar
  15. 15.
    K. A. Hofmann, Z. Anorg.Chem. 5, 75 (1897).CrossRefGoogle Scholar
  16. 16.
    A. Van Tets and H. W. W. Adrian, J. Inorg. Nucl. Chem. 39, 1607 (1977).CrossRefGoogle Scholar
  17. 17.
    H. W. W. Adrian and A. Van Tets, Acta. Crystallogr. 33, 2997 (1977).CrossRefGoogle Scholar
  18. 18.
    H. W. W. Adrian and A. Van Tets, Acta. Crystallogr. 34, 88 (1978).CrossRefGoogle Scholar
  19. 19.
    H. W. W. Adrian and A. Van Tets, Acta. Crystallogr. 34, 652 (1978).CrossRefGoogle Scholar
  20. 20.
    H. W. W. Adrian and A. Van Tets, Acta. Crystallogr. 34, 2632 (1978).CrossRefGoogle Scholar
  21. 21.
    H. W. W. Adrian and A. Van Tets, Acta. Crystallogr. 35, 153 (1979).CrossRefGoogle Scholar
  22. 22.
    R. N. Shchelokov, A. G. Beirakhov, Yu. N. Mikhailov, et al., Zh. Neorg. Khim. 32, 1173 (1987).Google Scholar
  23. 23.
    R. N. Shchelokov, Yu. N. Mikhailov, A. G. Beirakhov, et al., Russ. J. Inorg. Chem. 31, 2050 (1986).Google Scholar
  24. 24.
    R. N. Shchelokov, Yu. N. Mikhailov, I. M. Orlova, et al., Dokl. Akad. Nauk SSSR 280, 118 (1985).Google Scholar
  25. 25.
    A. G. Beirakhov, I. M. Orlova, E. G. Il’in, et al., Russ. J. Inorg. Chem. 54, 1217 (2009). doi 10.1134/S0036023609080087CrossRefGoogle Scholar
  26. 26.
    A. G. Beirakhov, I. M. Orlova, Z. R. Ashurov, et al., Russ. J. Inorg. Chem. 35, 3139 (1990).Google Scholar
  27. 27.
    A. G. Beirakhov, I. M. Orlova, E. G. Il’in, et al., Russ. J. Inorg. Chem. 52, 34 (2007). doi 10.1134/S003602360701007XCrossRefGoogle Scholar
  28. 28.
    R. N. Shchelokov, A. G. Beirakhov, I. M. Orlova, et al., Dokl. Akad. Nauk SSSR 285, 901 (1985).Google Scholar
  29. 29.
    A. G. Beirakhov, I. M. Orlova, Yu. N. Mikhailov, et al., Dokl. Akad. Nauk 381, 60 (2001).Google Scholar
  30. 30.
    A. G. Beirakhov, I. M. Orlova, E. G. Il’in, et al., Russ. J. Inorg. Chem. 52, 1896 (2007). doi 10.1134/S0036023607120169CrossRefGoogle Scholar
  31. 31.
    A. G. Beirakhov, I. M. Orlova, Z. R. Ashurov, et al., Russ. J. Inorg. Chem. 36, 647 (1991).Google Scholar
  32. 32.
    A. G. Beirakhov, I. M. Orlova, Z. R. Ashurov, et al., Russ. J. Inorg. Chem. 36, 654 (1991).Google Scholar
  33. 33.
    A. G. Beirakhov, I. M. Orlova, Yu. E. Gorbunova, et al., Russ. J. Inorg. Chem. 44, 1492 (1999).Google Scholar
  34. 34.
    A. Chakravorty, Coord. Chem. Rev. 13, 1 (1974).CrossRefGoogle Scholar
  35. 35.
    A. G. Beirakhov, I. M. Orlova, and E. G. Il’in, in Modern Problems of General and Inorganic Chemistry (Moscow, 2009), p. 272 [in Russian].Google Scholar
  36. 36.
    R. N. Shchelokov, Yu. N. Mikhailov, I. M. Orlova, et al., Koord. Khim. 10, 1644 (1984).Google Scholar
  37. 37.
    R. N. Shchelokov, Yu. N. Mikhailov, A. G. Beirakhov, et al., Russ. J. Inorg. Chem. 31, 2339 (1986).Google Scholar
  38. 38.
    R. Graziani, U. Casellato, P. A. Vigato, et al., J. Chem. Soc., Dalton Trans., No. 4, 697 (1983).CrossRefGoogle Scholar
  39. 39.
    S. Vukovic, L. A. Watson, S. O. Kang, et al., Inorg. Chem. 51, 3855 (2012).CrossRefGoogle Scholar
  40. 40.
    A. G. Beirakhov, I. M. Orlova, E. G. Il’in, et al., Russ. J. Inorg. Chem. 59, 1424 (2014). doi 10.1134/S0036023614120043CrossRefGoogle Scholar
  41. 41.
    A. G. Beirakhov, I. M. Orlova, E. G. Il’in, et al., Russ. J. Inorg. Chem. 55, 1546 (2010). doi 10.1134/S0036023610100098CrossRefGoogle Scholar
  42. 42.
    A. G. Beirakhov, I. M. Orlova, E. G. Il’in, et al., Russ. J. Inorg. Chem. 53, 1898 (2008). doi 10.1134/S0036023608120115CrossRefGoogle Scholar
  43. 43.
    A. G. Beirakhov, I. M. Orlova, A. V. Rotov, et al., Russ. J. Inorg. Chem. 61, 1522 (2016). doi 10.1134/S0036023616120032CrossRefGoogle Scholar
  44. 44.
    E. G. Witte and K. S. Schwochau, Inorg. Chim. Acta 9, 323 (1984).CrossRefGoogle Scholar
  45. 45.
    A. G. Kozlov, Russ. J. Inorg. Chem. 6, 1302 (1961).Google Scholar
  46. 46.
    N. A. Chumaevskii, N. A. Minaeva, Yu. N. Mikhailov, et al., Russ. J. Inorg. Chem. 43, 789 (1998).Google Scholar
  47. 47.
    S. P. Kelley, P. S. Barber, P. H. K. Mullins, et al., Chem. Commun. 50, 12504 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations