Advertisement

Russian Journal of Inorganic Chemistry

, Volume 63, Issue 6, pp 691–699 | Cite as

Heat-Treatment-Induced Evolution of the Mesostructure of Finely Divided Y3Al5O12 Produced by the Sol–Gel Method

  • E. P. Simonenko
  • N. P. Simonenko
  • G. P. Kopitsa
  • L. Almásy
  • F. Yu. Gorobtsov
  • V. G. Sevastyanov
  • N. T. Kuznetsov
Synthesis and Properties of Inorganic Compounds
  • 4 Downloads

Abstract

A method was developed for the low-temperature sol–gel synthesis of one of the most popular components of functional and structural materials—nanostructured yttrium aluminum garnet Y3Al5O12—using precursors from the class of alkoxoacetylacetonates produced from the corresponding acetylacetonates. It was determined that increasing duration of heat treatment of yttrium-aluminum-containing xerogen in air to 6 h reduces the crystallization temperature of the Y3Al5O12 phase from 920–930 to 750–800°C, which was confirmed by IR spectroscopy and X-ray powder diffraction analysis. The microstructure of nanocrystalline yttrium aluminum garnet obtained at 800°С was studied; it was found that the size of crystallites is 30–40 nm, the size of particles is 30–50 nm, and the size of pores is 20–30 nm. Small-angle neutron scattering demonstrated that, in the powders synthesized at 700–800°C, there is structural ordering of the short-range type, whereas in the nanocrystalline samples heat-treated at a higher temperature (850°С), there is no such ordering.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Niu, J. Xu, and Y. Zhang, Prog. Nat. Sci.: Mater. Int. 25, 209 (2015). doi 10.1016/j.pnsc.2015.05.006CrossRefGoogle Scholar
  2. 2.
    X. Ma, C. Wang, H. Tan, et al., J. Sol-Gel Sci. Technol. 80, 226 (2016). doi 10.1007/s10971-016-4063-7CrossRefGoogle Scholar
  3. 3.
    A. Potdevin, V. Briois, N. Caperaa, et al., RSC Adv. 6, 41962 (2016). doi 10.1039/C6RA06444BCrossRefGoogle Scholar
  4. 4.
    L. Tian, J. Shen, W. Xu, et al., RSC Adv. 6, 32381 (2016). doi 10.1039/C6RA04761KCrossRefGoogle Scholar
  5. 5.
    M. V. Rudenko, N. V. Gaponenko, A. V. Mudryi, and T. I. Orekhovskaya, J. Appl. Spectrosc. 83, 121 (2016). doi 10.1007/s10812-016-0253-xCrossRefGoogle Scholar
  6. 6.
    M. V. dos S. Rezende and C. W. A. Paschoal, Opt. Mater. 46, 530 (2015). doi 10.1016/j.optmat.2015.05. 019CrossRefGoogle Scholar
  7. 7.
    N. Francolon, A. Potdevin, D. Boyer, et al., Ceram. Int. 41, 11272 (2015). doi 10.1016/j.ceramint.2015.05.083CrossRefGoogle Scholar
  8. 8.
    Y. Y. Zhao, H. R. Xu, X. Y. Zhang, et al., Mater. Res. Innovations 19 (Suppl. 1), S1–413 (2015). doi 10.1179/1432891715Z.0000000001582CrossRefGoogle Scholar
  9. 9.
    C. M. A. Ferreira, G. S. Freiria, E. H. de Faria, et al., J. Lumin. 170, 686 (2016). doi 10.1016/j.jlumin.2015. 02.026CrossRefGoogle Scholar
  10. 10.
    V. Tucureanu, A. Matei, A. Avram, et al., MRS Commun. 7, 721 (2017). doi 10.1557/mrc.2017.84CrossRefGoogle Scholar
  11. 11.
    Y. Zhang, X. Qiao, J. Wan, et al., J. Mater. Chem. C 5, 8952 (2017). doi 10.1039/c7tc02909hCrossRefGoogle Scholar
  12. 12.
    A. Boukerika, L. Guerbous, and M. Belamri, Optik 127, 5235 (2016). doi 10.1016/j.ijleo.2016.03.037CrossRefGoogle Scholar
  13. 13.
    X. He, X. Liu, R. Li, et al., Sci. Rep. 6, article no. 22238, (2016). doi 10.1038/srep22238Google Scholar
  14. 14.
    B. Sundarakannan and M. Kottaisamy, Mater. Res. Bull. 74, 485 (2016). doi 10.1016/j.materresbull.2015. 10.057CrossRefGoogle Scholar
  15. 15.
    V. Tucureanu, A. Matei, and A. M. Avram, Opto-Electron. Rev. 23, 239 (2015). doi 10.1515/oere-2015-0038CrossRefGoogle Scholar
  16. 16.
    Y. Zhao, H. Xu, X. Zhang, et al., J. Eur. Ceram. Soc. 35, 3761 (2015). doi 10.1016/j.jeurceramsoc.2015. 05.017CrossRefGoogle Scholar
  17. 17.
    L. Guerbous and A. Boukerika, J. Nanomater, 1, article ID 617130 (2015). doi 10.1155/2015/617130Google Scholar
  18. 18.
    Z. Li, X.-c. Zhao, L.-j. Chen, et al., Guangpuxue Yu Guangpu Fenxi (Spectrosc. Spectr. Anal. (Beijing, China)) 35, 695 (2015). doi 10.3964/j.issn.1000-0593(2015)03-0695-05Google Scholar
  19. 19.
    X. Zhou, X. Luo, B. Wu, et al., Spectrochim. Acta, Part A 190, 76 (2018). doi 10.1016/j.saa.2017.09.011CrossRefGoogle Scholar
  20. 20.
    S. R. Naik, T. Shripathi, and A. V. Salker, J. Lumin. 161, 335 (2015). doi 10.1016/j.jlumin.2015.01.040CrossRefGoogle Scholar
  21. 21.
    X. He, X. Liu, C. You, et al., J. Mater. Chem. C 4, 10691 (2016). doi 10.1039/C6TC02763FCrossRefGoogle Scholar
  22. 22.
    Y. Zhao, H. Xu, X. Zhang, et al., J. Am. Ceram. Soc. 99, 756 (2016). doi 10.1111/jace.14098CrossRefGoogle Scholar
  23. 23.
    V. Tucureanu, A. Matei, I. Mihalache, et al., J. Mater. Sci. 50, 1883 (2015). doi 10.1007/s10853-014-8751-9CrossRefGoogle Scholar
  24. 24.
    J. Zhou, W. Zhang, L. Wang, et al., Ceram. Int. 37, 119 (2011). doi 10.1016/j.ceramint.2010.08.025CrossRefGoogle Scholar
  25. 25.
    S. Tanabe, S. Fujita, S. Yoshihara, et al., Proceedings of the Fifth International Conference on Solid State Lighting “Optics and Photonics 2005,” San Diego, California, USA, July 31–August 4, 2005, Proc. SPIE 5941, article no. 594112 (2005). doi 10.1117/12.614681Google Scholar
  26. 26.
    Y. Zhou, S. Wei, S. Li, et al., Int. J. Hydrogen Energy 42, 16362 (2017). doi 10.1016/j.ijhydene.2017.05.213CrossRefGoogle Scholar
  27. 27.
    Y. Rong, L. Tang, Y. Song, et al., RSC Adv. 6, 80595 (2016). doi 10.1039/C6RA15320HCrossRefGoogle Scholar
  28. 28.
    Y. Chen, C. Lu, L. Tang, et al., Sol. Energy Mater. Sol. Cells 149, 128 (2016). doi 10.1016/j.solmat.2016.01.007CrossRefGoogle Scholar
  29. 29.
    L. Wang, J.-L. Ren, and C.-S. Hao, Kem. Ind. 64, 339 (2015). doi 10.15255/KUI.2015.007CrossRefGoogle Scholar
  30. 30.
    H. Zhang, C. Ma, Y. Li, et al., Appl. Catal. A 503, 209 (2015). doi 10.1016/j.apcata.2015.07.006CrossRefGoogle Scholar
  31. 31.
    C. Lu, Y. Chen, Y. Li, et al., RSC Adv. 5, 54769 (2015). doi 10.1039/C5RA11102ACrossRefGoogle Scholar
  32. 32.
    Y. Guo, Y. Li, S. Li, et al., Energy 82, 72 (2015). doi 10.1016/j.energy.2014.12.071CrossRefGoogle Scholar
  33. 33.
    Y. Li, Y. Guo, S. Li, et al., Int. J. Hydrogen Energy 40, 2132 (2015). doi 10.1016/j.ijhydene.2014.12.023CrossRefGoogle Scholar
  34. 34.
    G. Liu, Z. Fu, T. Sheng, et al., RSC Adv. 6, 97676 (2016). doi 10.1039/C6RA15814ECrossRefGoogle Scholar
  35. 35.
    X. Chen, T. Lu, Y. Wu, et al., J. Sol-Gel Sci. Technol. 79, 606 (2016). doi 10.1007/s10971-016-4040-1CrossRefGoogle Scholar
  36. 36.
    O. Opuchovic, S. Culunlu, A. Morkan, et al., Chem. Eng. Commun. 204, 1037 (2017). doi 10.1080/00986445.2017.1336091CrossRefGoogle Scholar
  37. 37.
    N. P. Padture and P. G. Klemens, J. Am. Ceram. Soc. 80, 1018 (2005). doi 10.1111/j.1151-2916.1997.tb02937.xCrossRefGoogle Scholar
  38. 38.
    I. Sakaguchi, H. Haneda, J. Tanaka, and T. Yanagitani, J. Am. Ceram. Soc. 79, 1627 (1996). doi 10.1111/j.1151-2916.1996.tb08774.xCrossRefGoogle Scholar
  39. 39.
    Y. J. Su, R. W. Trice, K. T. Faber, et al., Oxid. Met. 61, 253 (2004). doi 10.1023/B:OXID.0000025334.02788.d3CrossRefGoogle Scholar
  40. 40.
    C. M. Weyant and K. T. Faber, Surf. Coat. Technol. 202, 6081 (2008). doi 10.1016/j.surfcoat.2008.07.008CrossRefGoogle Scholar
  41. 41.
    S. Saravanan, G. Hari Srinivas, V. Jayaram, et al., Surf. Coat. Technol. 202, 4653 (2008). doi 10.1016/j.surfcoat. 2008.03.029CrossRefGoogle Scholar
  42. 42.
    Y. E. Lebedeva, N. V. Popovich, L. A. Orlova, et al., Glass Ceram. 71, 400 (2015). doi 10.1007/s10717-015-9697-3CrossRefGoogle Scholar
  43. 43.
    Y. E. Lebedeva, N. V. Popovich, L. A. Orlova, et al., Russ. J. Inorg. Chem. 62, 1032 (2017). doi 10.1134/S0036023617080137CrossRefGoogle Scholar
  44. 44.
    S. Baitalik, N. Kayal, and O. Chakrabarti, Int. J. Appl. Ceram. Technol. 14, 652 (2017). doi 10.1111/ijac.12682CrossRefGoogle Scholar
  45. 45.
    S. B. Li, J. G. Song, and H. Y. Ru, Key Eng. Mater. 602–603, 403 (2014). doi 10.4028/www.scientific.net/KEM.602-603.403Google Scholar
  46. 46.
    E. Ciudad, E. Sanchez-Gonzalez, O. Borrero-Lopez, et al., Scr. Mater. 69, 598 (2013). doi 10.1016/j.scriptamat. 2013.07.007CrossRefGoogle Scholar
  47. 47.
    K. Shimoda, T. Hinoki, H. Kishimoto, and A. Kohyama, Compos. Sci. Technol. 71, 326 (2011). doi 10.1016/j.compscitech.2010.11.026CrossRefGoogle Scholar
  48. 48.
    N. P. Simonenko, Ph. Yu. Gorobtsov, N. N. Efimov, et al., Russ. J. Inorg. Chem. 62, 1135 (2017). doi 10.1134/S0036023617090145CrossRefGoogle Scholar
  49. 49.
    N. P. Simonenko, E. P. Simonenko, V. G. Sevastyanov, N. T. Kuznetsov, Russ. J. Inorg. Chem. 61, 805 (2016). doi 10.1134/S0036023616070184CrossRefGoogle Scholar
  50. 50.
    N. P. Simonenko, E. P. Simonenko, V. G. Sevastyanov, N. T. Kuznetsov, Russ. J. Inorg. Chem. 61, 667 (2016). doi 10.1134/S003602361606019XCrossRefGoogle Scholar
  51. 51.
    N. P. Simonenko, E. P. Simonenko, V. G. Sevastyanov, N. T. Kuznetsov, Russ. J. Inorg. Chem. 60, 795 (2015). doi 10.1134/S0036023615070153CrossRefGoogle Scholar
  52. 52.
    N. P. Simonenko, E. P. Simonenko, A. S. Mokrushin, et al., Russ. J. Inorg. Chem. 62, 695 (2017). doi 10.1134/S0036023617060213CrossRefGoogle Scholar
  53. 53.
    E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, et al., Compos. Nanostruct, No. 4, 52 (2011).Google Scholar
  54. 54.
    N. P. Simonenko, V. A. Nikolaev, E. P. Simonenko, et al., Russ. J. Inorg. Chem. 61, 1505 (2016). doi 10.1134/S0036023616120184CrossRefGoogle Scholar
  55. 55.
    Y.-S. Ho, C.-H. Wu, Y.-S. Chen, and C.-K. Liu, Int. J. Appl. Ceram. Technol. 12 (S2), E53 (2015). doi 10.1111/ijac.12221Google Scholar
  56. 56.
    A. M. Kutyin, E. Y. Rostokina, E. M. Gavrishchuk, et al., Ceram. Int. 41, 10616 (2015). doi 10.1016/j.ceramint. 2015.04.161CrossRefGoogle Scholar
  57. 57.
    V. G. Sevast’yanov, E. P. Simonenko, N. P. Simonenko, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 57, 307 (2012). doi 10.1134/S0036023612030278CrossRefGoogle Scholar
  58. 58.
    E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, N. T. Kuznetsov, Russ. J. Inorg. Chem. 57, 1521 (2012). doi 10.1134/S0036023612120194CrossRefGoogle Scholar
  59. 59.
    N. P. Simonenko, Candidate’s Dissertation in Chemistry (Kurnakov Inst. Gen. Inorg. Chem., Russ. Acad. Sci., Moscow, 2013).Google Scholar
  60. 60.
    G. D. Wignall and F. S. Bates, J. Appl. Crystallogr. 20, 28 (1987).CrossRefGoogle Scholar
  61. 61.
    U. Keiderling, Appl. Phys. A: Mater. Sci. Process 74, s1455 (2002).Google Scholar
  62. 62.
    P. W. Schmidt, D. Avnir, D. Levy, et al., J. Chem. Phys. 94, 1474 (1991).CrossRefGoogle Scholar
  63. 63.
    J. Teixera, in On Growth and Form: Fractal and Non-Fractal Patterns in Physics, Ed. by H. E. Stanley and N. Ostrowsky, (Martinus Nijhoff, Dordrecht, 1986).Google Scholar
  64. 64.
    A. Guinier, Ann. Phys. 12, 161 (1939).CrossRefGoogle Scholar
  65. 65.
    G. Beaucage and D. W. Schaefer, J. Non-Cryst. Solids 172–174, 797 (1994).Google Scholar
  66. 66.
    G. Porod, in Small Angle X-ray Scattering, Ed. by O. Glatter and O. N. Y. Kratky (Academic, New York, 1982).Google Scholar
  67. 67.
    A. Guinier and G. Fournet, Small Angle Scattering of X-rays (Wiley, New York, 1955), p. 17.Google Scholar
  68. 68.
    G. Beaucage, J. Appl. Crystallogr. 28, 717 (1995).CrossRefGoogle Scholar
  69. 69.
    P. D. Southon, J. R. Bartlett, J. L. Woolfrey, and B. Ben-Nissan, Chem. Mater. 14, 4313 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. P. Simonenko
    • 1
  • N. P. Simonenko
    • 1
  • G. P. Kopitsa
    • 2
    • 3
  • L. Almásy
    • 4
  • F. Yu. Gorobtsov
    • 1
  • V. G. Sevastyanov
    • 1
  • N. T. Kuznetsov
    • 1
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Konstantinov St. Petersburg Institute of Nuclear Physics, NITs “Kurchatov Institute,”Orlova roshchaGatchina, Leningrad oblastRussia
  3. 3.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia
  4. 4.Institute for Solid State Physics and OpticsWigner Research Centre for PhysicsBudapestHungary

Personalised recommendations