Advertisement

Russian Journal of Inorganic Chemistry

, Volume 63, Issue 6, pp 753–763 | Cite as

Structural Features of Monomeric Octahedral Monooxo d2-Renium(V) Complexes with Oxygen Atoms of O,N Bidentate-Chelating Ligands (Ln): 2. [ReO(Ln)(Lmono)3] Complexes with Six- and Seven-Membered Chelate Rings ReNC3O and ReNC4O

  • V. S. Sergienko
  • A. V. Churakov
Coordination Compounds

Abstract

Structural features of 26 mononuclear octahedral monooxo d2-Re(V) complexes with singly charged oxygen atoms of bidentate-chelating (O,N) ligands (Ln), namely, [ReO(Ln)(Lmono)3] (where Lmono stands for a monodentate ligand) containing six- and seven-membered chelate rings ReNC3O and ReNC4O, are considered. The atoms O(Ln), with one exception, are in the trans positions to ligands O(oxo). In [ReO(OPPh3)Cl2(L35)], the trans position to the oxo ligand is occupied by the neutral oxygen atom of ligand OPPh3. In [ReO(Hal)2(Ln)(Lmono)] [(Lmono = PPh3, AsPPh3, and OPPh3)] structures, two geometric isomers exist: halide ligands are either in the cis- or in the trans position to each other.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. S. Sergienko and A. V. Churakov, Zh. Neorg. Khim. 63 631 (2018).Google Scholar
  2. 2.
    A. Sachse, N. C. Mosch-Zanetti, G. Lyashenko, et al., Inorg. Chem. 46, 7129 (2007).CrossRefGoogle Scholar
  3. 3.
    J. C. Bryan, R. E. Stenkamp, T. H. Tulip, and J. M. Mayer, Inorg. Chem. 26, 2283 (1987).CrossRefGoogle Scholar
  4. 4.
    M. M. Abu-Omar and S. I. Khan, Inorg. Chem. 37, 4979 (1998).CrossRefGoogle Scholar
  5. 5.
    M. G. Mendez, A. M. Arif, and J. A. Gladysz, Organomet. 10, 2199 (1991).CrossRefGoogle Scholar
  6. 6.
    T. I. A. Gerber, D. Luzipo, and P. I. Mayer, J. Coord. Chem. 59, 1521 (2006).CrossRefGoogle Scholar
  7. 7.
    G. Bandoli, A. Dolmella, T. I. A. Gerber, et al., J. Coord. Chem. 55, 823 (2002).CrossRefGoogle Scholar
  8. 8.
    X. Chen, F. J. Femia, J. W. Babich, and J. Zubieta, Inorg. Chim. Acta 306, 113 (2000).Google Scholar
  9. 9.
    G. Bandoli, S. Gatto, T. I. A. Gerber, et al., J. Coord. Chem. 39, 299 (1996).CrossRefGoogle Scholar
  10. 10.
    V. Bertolazi, M. Sacerdoti, G. Gilli, and U. Mazzi, Acta Crystallogr., Sect. B 38, 426 (1982).CrossRefGoogle Scholar
  11. 11.
    M. Sacerdoti, V. Bertolazi, G. Gilli, and A. Duatti, Acta Crystallogr., Sect. C 40, 968 (1984).CrossRefGoogle Scholar
  12. 12.
    S. Majumber, A. Bhattacharya, J. P. Naskar, et al., Inorg. Chim. Acta 399, 166 (2013).CrossRefGoogle Scholar
  13. 13.
    B. Jadoo, I. N. Booysen, and M. P. Akerman, Polyhedron 126, 159 (2017).CrossRefGoogle Scholar
  14. 14.
    P. Saha, J. P. Nascer, A. Bhattacharya, et al., J. Coord. Chem. 69, 303 (2016).CrossRefGoogle Scholar
  15. 15.
    M. Shivakumar, S. Banerjee, M. Menon, and A. Chakravorty, Inorg. Chim. Acta 275–276, 546 (1998).CrossRefGoogle Scholar
  16. 16.
    A. Abrahams, T. I. A. Gerber, R. Luzipo, and P. Mayer, J. Coord. Chem. 60, 2207 (2007).CrossRefGoogle Scholar
  17. 17.
    J. A. Schachner, B. Terfassa, L. N. Peschel, et al., Inorg. Chem. 53, 12918 (2014).CrossRefGoogle Scholar
  18. 18.
    J. Liy, D. Wu, X. Su, et al., Inorg. Chem. 55, 2597 (2016).CrossRefGoogle Scholar
  19. 19.
    A. Bhattharya, J. P. Naskar, P. Saha, et al., Inorg. Chim. Acta 447, 168 (2016).CrossRefGoogle Scholar
  20. 20.
    N. Zwettler, J. A. Schachner, F. Belaj, and N. C. Mosch-Zanetti, Inorg. Chem. 53, 12832 (2014).CrossRefGoogle Scholar
  21. 21.
    T. I. A. Gerber, D. Luzipo, and P. I. Mayer, J. Coord. Chem. 57, 1345 (2004).CrossRefGoogle Scholar
  22. 22.
    T. I. A. Gerber, D. Luzipo, and P. I. Mayer, Inorg. Chim. Acta 357, 429 (2004).CrossRefGoogle Scholar
  23. 23.
    X. Chen, F. J. Femia, J. W. Babich, and J. Zubieta, Inorg. Chim. Acta 308, 80 (2002).CrossRefGoogle Scholar
  24. 24.
    G. Bandeli, A. Dolmella, T. I. A. Gerber, et al., J. Coord. Chem. 55, 823 (2002).CrossRefGoogle Scholar
  25. 25.
    C. J. T. Lock and G. Turner, Acta Crystallogr., Sect. B 34, 923 (1978).CrossRefGoogle Scholar
  26. 26.
    B. G. Das, R. Nallagonda, D. Day, and P. Ghoral, Chem.-Eur. J. 21, 12601 (2015).CrossRefGoogle Scholar
  27. 27.
    M. A. Porai-Koshits and V. S. Sergienko, Usp. Khim. 59, 86 (1990).CrossRefGoogle Scholar
  28. 28.
    M. A. Porai-Koshits and L. O. Atovmyan, Koord. Khim. 1, 1271 (1975).Google Scholar
  29. 29.
    E. M. Shustorovich, M. A. Porai-Koshits, and Yu. A. Buslaev, Coord. Chem. Rev. 17, 1 (1975).CrossRefGoogle Scholar
  30. 30.
    V. S. Sergienko, Zh. Neorg. Khim. 59, 957 (2014).Google Scholar
  31. 31.
    V. S. Sergienko, Russ. J. Inorg. Chem. 60, 1723 (2015).CrossRefGoogle Scholar
  32. 32.
    V. S. Sergienko and A. V. Churakov, Zh. Neorg. Khim. 61, 873 (2016).Google Scholar
  33. 33.
    V. S. Sergienko, Zh. Neorg. Khim. 59, 1338 (2014).Google Scholar
  34. 34.
    V. S. Sergienko and A. V. Churakov, Russ. J. Inorg. Chem. 59, 1683 (2014).Google Scholar
  35. 35.
    V. S. Sergienko and A. V. Churakov, Russ. J. Inorg. Chem. 59, 1715 (2014).CrossRefGoogle Scholar
  36. 36.
    V. S. Sergienko, Zh. Neorg. Khim. 60, 333 (2015).Google Scholar
  37. 37.
    V. S. Sergienko, Zh. Neorg. Khim. 60, 758 (2015).Google Scholar
  38. 38.
    V. S. Sergienko, Zh. Neorg. Khim. 61, 1461 (2016).Google Scholar
  39. 39.
    V. S. Sergienko and A. V. Churakov, Russ. J. Inorg. Chem. 61, 1708 (2016).CrossRefGoogle Scholar
  40. 40.
    V. S. Sergienko and A. V. Churakov, Zh. Neorg. Khim. 62, 1337 (2017).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.All-Russia Institute for Scientific and Technical InformationRussian Academy of SciencesMoscowRussia

Personalised recommendations