Advertisement

Russian Journal of Inorganic Chemistry

, Volume 63, Issue 6, pp 714–724 | Cite as

New Phosphate-Sulfates with NZP Structure

  • D. O. Savinykh
  • S. A. Khainakov
  • A. I. Orlova
  • S. Garcia-Granda
Synthesis and Properties of Inorganic Compounds

Abstract

NaZr2–xBx(PO4)3–2x(SO4)2x (0 ≤ x ≤ 1.25, B = Mg, Co, Ni, Cu, Zn), and NaZr2–xRx(PO4)3–x(SO4)x (0 ≤ x ≤ 1.25, R = Al, Fe) phosphate-sulfates series have been prepared by a sol–gel process. These compounds belong to the NaZr2(PO4)3 (NZP) structure family and crystallize in hexagonal crystal system, space group R\(\bar 3\)c. Limited solid solution series were found to exist; their formation temperatures and thermal stability limits were determined. Particle sizes as determined by microstructure observation were 50–200 nm, and for Cu- and Zn-containing samples, 200–500 nm. The thermal expansion of phosphate-sulfate NaZr1.25Cu0.75(PO4)1.5(SO4)1.5 was studied in the range 25–700°C. Thermal expansion coefficients and thermal expansion anisotropy were found to be αa =–5.40 × 10–6 °C–1, αс = 18.88 × 10–6 °C–1, αavg = 2.69 × 10–6 °C–1, and Δα = 24.28 × 10–6 °C–1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Hirata, Ceram. Int. 41, 1145 (2015).CrossRefGoogle Scholar
  2. 2.
    P. Oikonomou, Ch. Dedeloudis, C. J. Stournaras, and Ch. Ftikos, J. Eur. Ceram. Soc. 27, 1253 (2007).CrossRefGoogle Scholar
  3. 3.
    A. I. Orlova, S. G. Samoilov, G. N. Kazantsev, et al., Crystallogr. Repts 54, 431 (2009).CrossRefGoogle Scholar
  4. 4.
    T. Isobe, T. Umezome, Y. Kameshima, et al., Mater. Res. Bull. 44, 2045 (2009).CrossRefGoogle Scholar
  5. 5.
    A. I. Orlova, S. A. Khainakov, A. S. Ivanova, et al., Kristallografiya 58, 64 (2013).Google Scholar
  6. 6.
    J. Alamo, Solid State Ionics 63–65, 547 (1993).Google Scholar
  7. 7.
    A. I. Orlova, Radiochem. 44, 423 (2002).CrossRefGoogle Scholar
  8. 8.
    E. Breval, H. A. McKinstry, and D. K. Agrawal, J. Mater. Sci. 35, 3359 (2000).CrossRefGoogle Scholar
  9. 9.
    T. Oota and I. Yamai, J. Am. Chem. Soc. 69, 1 (1986).Google Scholar
  10. 10.
    G. E. Lenain, H. A. McKinstry, J. Alamo, and D. K. Agrawal, J. Mater. Sci. 22, 17 (1987).CrossRefGoogle Scholar
  11. 11.
    J. L. Rodrigo and J. Alamo, Mater. Res. Bull. 26, 475 (1991).CrossRefGoogle Scholar
  12. 12.
    D. Tailor, Br. Ceram. Trans. 90 (2), 64 (1991).Google Scholar
  13. 13.
    L. Hagman and P. Kierkegaard, Acta Chem. Scand. 22, 1822 (1822).CrossRefGoogle Scholar
  14. 14.
    A. I. Orlova and A. K. Korittseva, Crystallogr. Repts 49, 724 (2004).CrossRefGoogle Scholar
  15. 15.
    G. E. Lenain, H. A. McKinstry, S. Y. Limaye, and D. A. Woodward, Mater. Res. Bull. 19, 1451 (1984).CrossRefGoogle Scholar
  16. 16.
    Ye. V. Bortsova, A. K. Koryttseva, A. I. Orlova, et al., J. Alloys Compd. 475, 74 (2009).CrossRefGoogle Scholar
  17. 17.
    A. I. Orlova, A. K. Korittseva, Ye. V. Lipatova, et al., J. Mater. Sci. 40, 2741 (2005).CrossRefGoogle Scholar
  18. 18.
    V. Yu. Volgutov and A. I. Orlova, Crystallogr. Repts 60, 721 (2015).CrossRefGoogle Scholar
  19. 19.
    S. Y. Limaye, D. K. Agrawal, R. Roy, and Y. Mehrotra, J. Mater. Sci. 26, 93 (1991).CrossRefGoogle Scholar
  20. 20.
    A. I. Orlova, A. K. Korittseva, Ye. V. Bortsova, et al., Crystallogr. Repts 51, 357 (2006).CrossRefGoogle Scholar
  21. 21.
    G. Rambabu, RaoK. Koteswara, N. Anantharamulu, et al., J. Mater. Sci. 42, 3613 (2007).CrossRefGoogle Scholar
  22. 22.
    N. Anantharamulu, RaoK. Koteswara, M. Vithal, and G. Prasad, J. Alloys Compd. 479, 684 (2009).CrossRefGoogle Scholar
  23. 23.
    G. Buvaneswari, KuttyK. V. Govindan, and U. V. Varadaraju, Mater. Res. Bull. 39, 475 (2004).CrossRefGoogle Scholar
  24. 24.
    M. P. Carrasco, M. C. Guillem, and J. Alamo, Mater. Res. Bull. 29, 817 (1994).CrossRefGoogle Scholar
  25. 25.
    KuttyK. V. Govindan, R. Asuvathraman, C. K. Mathews, and U. V. Varadaraju, Mater. Res. Bull. 29, 1009 (1994).CrossRefGoogle Scholar
  26. 26.
    D. A. Woodcock, P. Lightfoot, and C. Ritter, Chem. Commun., No. 1, 107 (1998).CrossRefGoogle Scholar
  27. 27.
    P. Lightfoot, D. A. Woodcock, J. D. Jorgensen, and S. Short, Int. J. Inorg. Mater 1, 53 (1999).CrossRefGoogle Scholar
  28. 28.
    M. Alami, R. Brochu, J. L. Soubeyroux, et al., J. Solid State Chem. 90, 185 (1991).CrossRefGoogle Scholar
  29. 29.
    R. Brochu, M. Louer, M. Alami, et al., Mater. Res. Bull. 32, 113 (1997).CrossRefGoogle Scholar
  30. 30.
    I. Yamai, T. Ota, and P. Jin, J. Ceram. Soc. Jpn. 96, 1019 (1988).CrossRefGoogle Scholar
  31. 31.
    J. Alamo and R. Roy, J. Solid State Chem. 51, 270 (1984).CrossRefGoogle Scholar
  32. 32.
    Y. Piffard, A. Verbaere, and M. Kinoshita, J. Solid State Chem. 71, 121 (1987).CrossRefGoogle Scholar
  33. 33.
    G. Blasse, Y. Piffard, and L. Struye, Chem. Phys. Lett. 147, 514 (1988).CrossRefGoogle Scholar
  34. 34.
    V. I. Pet’kov, A. S. Dmitrienko, M. V. Sukhanov, et al., Russ. J. Inorg. Chem. 61, 623 (2016).CrossRefGoogle Scholar
  35. 35.
    J. Laugier and B. Bochu, LMGP Suite of Programs for the Interpretation of X-ray Experiments, ENSP (Laboratoire des Materriaux et du Gernie Physique, France).Google Scholar
  36. 36.
    V. I. Pet’kov, A. I. Orlova, and O. V. Egor’kova, J. Struct. Chem. 37, 933 (1996).CrossRefGoogle Scholar
  37. 37.
    T. Ota and I. Yamai, J. Ceram. Soc. Jpn. 95, 531 (1987).Google Scholar
  38. 38.
    E. Breval and D. K. Agrawal, Br. Ceram. Trans. 94 (1), 27 (1995).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. O. Savinykh
    • 1
  • S. A. Khainakov
    • 2
  • A. I. Orlova
    • 1
  • S. Garcia-Granda
    • 2
  1. 1.Lobachevsky State UniversityNizhny NovgorodRussia
  2. 2.University of OviedoOviedoSpain

Personalised recommendations