Advertisement

Russian Journal of Inorganic Chemistry

, Volume 63, Issue 6, pp 833–836 | Cite as

Polythermal Section FeSb2S4–FeSm2S4 of the FeS–Sb2S3–Sm2S3 System

  • O. M. Aliev
  • M. M. Asadov
  • D. S. Azhdarova
  • Sh. G. Mamedov
  • V. M. Ragimova
Physicochemical Analysis of Inorganic Systems
  • 5 Downloads

Abstract

Phase equilibria in the FeSb2S4–FeSm2S4 system were studied by physicochemical analysis methods (differential thermal and X-ray powder diffraction analyses and microhardness and density measurements), and the T–x phase diagram of the system was constructed. Intermediate phase FeSmSbS4 melting congruently at 1255 K was found to form. According to the X-ray powder diffraction data, FeSmSbS4 crystallizes in the orthorhombic system with the unit cell parameters a = 11.446 Å, b = 14.160 Å, c = 3.800 Å, Z = 4, space group Pnam, ρpycn = 4.96 g/cm3, and ρX-ray = 5.00 g/cm3. In the FeSb2S4–FeSmSbS4 segment of the phase diagram of the FeSb2S4–FeSm2S4 system, an unlimited series of solid solutions with an orthorhombic unit cell forms. The isothermal section of the FeS–Sb2S3–Sm2S3 system at 298 K was constructed. The molar specific heat Cp (T) of FeSb2S4 was approximated within the range 300–800 K.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. G. Rustamov, O. M. Aliev, A. V. Einullaev, and I. P. Aliev, Chalcolanthanates of Rare Elements (Nauka, Moscow, 1989) [in Russian].Google Scholar
  2. 2.
    P. P. Lemoineet, D. Carri, and F. Robert, Acta Crystallogr. 47, 938 (1991).Google Scholar
  3. 3.
    J.-Z. Gao, I. Nakai, and K. Nagashima, Bull. Chem. Soc. Jpn. 56, 2615 (1983).CrossRefGoogle Scholar
  4. 4.
    P. P. Lemoineet, D. Carri, and M. Guittard, Acta Crystallogr. 37, 1281 (1981).CrossRefGoogle Scholar
  5. 5.
    A. Assoud, K. M. Kleinke, and H. Kleinke, Chem. Mater. 18, 1041 (2006).CrossRefGoogle Scholar
  6. 6.
    C. Ecrepont and M. Cuittard, Mater. Res. Bull. 23, 37 (1988).CrossRefGoogle Scholar
  7. 7.
    A. A. Eliseev and G. M. Kuz’micheva, Zh. Neorg. Khim. 24, 68 (1979).Google Scholar
  8. 8.
    L. Jiuling, H. Jiashan, Z. Kezi, and Z. Guilan, Acta Geol. Sin. 1, 393 (1988).CrossRefGoogle Scholar
  9. 9.
    O. V. Andreev, Zh. Neorg. Khim. 34, 1603 (1989).Google Scholar
  10. 10.
    O. V. Andreev, V. G. Bamburov, and V. M. Andreeva, Zh. Neorg. Khim. 36, 2393 (1991).Google Scholar
  11. 11.
    O. V. Andreev, N. N. Parshukov, and V. G. Bamburov, Zh. Neorg. Khim. 37, 1882 (1992).Google Scholar
  12. 12.
    A. S. Korotkov, N. A. Khritokhin, and O. V. Andreev, Russ. J. Inorg. Chem. 50, 61 (2005).Google Scholar
  13. 13.
    O. V. Andreev, O. Yu. Mitroshin, and I. A. Razumkova, Russ. J. Inorg. Chem. 53, 323 (2008).CrossRefGoogle Scholar
  14. 14.
    O. V. Andreev, O. Yu. Mitroshin, and I. A. Razumkova, Russ. J. Inorg. Chem. 52, 1161 (2007).CrossRefGoogle Scholar
  15. 15.
    P. Patnaik, Handbook of Inorganic Chemicals (McGraw-Hill, New York, 2002).Google Scholar
  16. 16.
    A. I. Dzhabbarov, Zh. Fiz. Khim. 59, 202 (1985).Google Scholar
  17. 17.
    I. I. Seal, R. Robert, R. A. Robie, et al., Econ. Geol. 87, 1911 (1992).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. M. Aliev
    • 1
  • M. M. Asadov
    • 1
  • D. S. Azhdarova
    • 1
  • Sh. G. Mamedov
    • 1
  • V. M. Ragimova
    • 1
  1. 1.Nagiev Institute of Catalysis and Inorganic ChemistryNational Academy of Sciences of AzerbaijanBakuAzerbaijan

Personalised recommendations