Advertisement

Russian Journal of Inorganic Chemistry

, Volume 63, Issue 4, pp 460–467 | Cite as

Structural Features of [{MoO2(Lbi)}2(μ-O)] Based Oxomolybdenum(VI) Complexes with Five-Coordinate Molybdenum(VI)

  • V. S. SergienkoEmail author
Coordination Compounds
  • 16 Downloads

Abstract

Structural features of eight binuclear complexes with the general formula [{MoO2(L bi n )}2(μ-O)] (IVIII) (Lbi is a bidentate chelate ligand, n = 1–8), in which the coordination number of Mo atoms is five, are considered. The parameter τ = (A–B)/60, where A and B are the greatest bond angles among the ten bond angles at the Mo atoms in coordination pentahedra, can be used as a criterion characterizing the coordination polyhedron of the molybdenum atom in complexes IVIII. The parameter τ is zero for an ideal square pyramid and unity for an ideal trigonal bipyramid.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. H. Allen, Acta Crystallogr., Sect. B 58, 380 (2002).CrossRefGoogle Scholar
  2. 2.
    V. S. Sergienko, V. L. Abramenko, Yu. E. Gorbunova, and A. V. Churakov, Russ. J. Inorg. Chem. (in press).Google Scholar
  3. 3.
    H. Oku, N. Ueyama, and A. Nakamura, Bull. Chem. Soc. Jpn. 72, 2261 (1999).CrossRefGoogle Scholar
  4. 4.
    H. Sugimoto, M. Tarumizu, K. Tanaka, et al., Dalton Trans., 3558 (2005).Google Scholar
  5. 5.
    W. Henderson, B. K. Nicholson, J. H. Bridson, et al., Inorg. Chim. Acta 375, 142 (2011).CrossRefGoogle Scholar
  6. 6.
    B. Piggott, S. F. Wong, and M. V. Capparelli, Inorg. Chim. Acta 141, 281 (1988).CrossRefGoogle Scholar
  7. 7.
    B. Piggott, R. N. Sheppard, and D. J. Williams, Inorg. Chim. Acta 86, L65 (1984).CrossRefGoogle Scholar
  8. 8.
    V. Chilou, P. Gouzerh, Y. Jeanin, and F. Robert, J. Chem. Soc., Chem. Commun., 76 (1989).Google Scholar
  9. 9.
    C. G. Pierpont and R. M. Buchanan, J. Am. Chem. Soc. 97, 6450 (1975).CrossRefGoogle Scholar
  10. 10.
    V. S. Sergienko, V. L. Abramenko, Yu. E. Gorbunova, and A. V. Churakov, Russ. J. Inorg. Chem. (in press).Google Scholar
  11. 11.
    M. A. Porai-Koshitz, Izv. Jugosl. Cent. Kristallogr. 9, 19 (1974).Google Scholar
  12. 12.
    A. W. Addison, T. N. Rao, J. Reedijk, et al., J. Chem. Soc., Dalton Trans., 1349 (1984).Google Scholar
  13. 13.
    C. R. Marabella, J. H. Enemark, K. F. Miller, et al., Inorg. Chem. 22, 3456 (1983).CrossRefGoogle Scholar
  14. 14.
    P. J. Hagram, D. Hagram, and J. Zubieta, Angew. Chem., Int. Ed. Engl. 238, 2638 (1999).Google Scholar
  15. 15.
    M. I. Niven, J. J. Gruywagen, and J. B. B. Heyns, J. Chem. Soc., Dalton Trans., 2007 (1991).Google Scholar
  16. 16.
    M. Inoue and T. Yamase, Bull. Chem. Soc. Jpn. 68, 3055 (1995).CrossRefGoogle Scholar
  17. 17.
    A. Briceno, A. Fulgence, Y. Hill, and R. Atencio, Dalton Trans., 3275 (2008).Google Scholar
  18. 18.
    C. B. Knober, B. R. Penfold, W. T. Robinson, et al., J. Chem. Soc., Dalton Trans., 248 (1980).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.All-Russia Institute of Scientific and Technical InformationRussian Academy of SciencesMoscowRussia

Personalised recommendations