Russian Journal of Inorganic Chemistry

, Volume 63, Issue 4, pp 503–511 | Cite as

Effect of the Synthesis Conditions on the Crystal, Local, and Electronic Structures of Ce 2x 4+ Ce 2-2x 3+ M2O7 + x (M = Zr, Hf)

  • V. V. PopovEmail author
  • A. P. Menushenkov
  • R. M. Khubbutdinov
  • A. A. Yastrebtsev
  • A. S. Sharapov
  • Ya. V. Zubavichus
  • R. D. Svetogorov
  • A. L. Trigub
  • N. A. Tsarenko
  • L. A. Arzhatkina
  • V. V. Kurilkin
Physical Methods of Investigation


The effect of synthesis conditions (type of cations, annealing temperature, reductive or oxidative atmosphere) on the chemical composition and structure of compounds formed in the MO2–CeO2/Ce2O3 systems (M = Zr, Hf) was studied by X-ray diffraction, X-ray absorption spectroscopy, Raman spectroscopy, and thermogravimetric analysis. The isothermal annealing of the precursors at temperatures below 1000°C in air gives Ce0.5M0.5O2 powders with fluorite type cubic structure (space group Fmm). High-temperature annealing above 1000°C gives rise to additional tetragonal (space group P42/nmc) (for zirconates) or monoclinic (space group P21/a) (for hafnates) phases. The annealing in a hydrogen atmosphere affords the compounds Ce 2x 4+ Ce 2-2x 3+ M2O7 + x with an intermediate oxidation state of cerium and the x value depending on both the reduction conditions and the pre-annealing parameters. Vacuum annealing at 1400°C considerably decreases the content of Ce(IV) in the samples and affords a pyrochlore structure (space group Fdm) with predominating Ce(III) cations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. A. Arsen’ev, V. B. Glushkova, et al., Rare-Earth Compounds: Zirconates, Hafnates, Niobates, Tantalates, and Antimonates (Nauka, Moscow, 1985) [in Russian].Google Scholar
  2. 2.
    K. I. Portnoi and N. I. Timofeeva, Rare-Earth Oxygen Compounds (Metallurgiya, Moscow, 1986) [in Russian].Google Scholar
  3. 3.
    V. V. Popov and A. A. Pisarev, Materials and Manufacturing Processes of Thermal Barrier Coatings (NIYaU MIFI, Moscow, 2016) [in Russian].Google Scholar
  4. 4.
    A. V. Shlyakhtina and L. G. Shcherbakova, Russ. J. Electrochem. 48, 1 (2012).CrossRefGoogle Scholar
  5. 5.
    V. D. Risovany, A. V. Zakharov, E. M. Muraleva, et al., J. Nucl. Mater. 355, 163 (2006).CrossRefGoogle Scholar
  6. 6.
    R. C. Ewing, W. J. Weber, and J. Lian, J. Appl. Phys. 95, 5949 (2004).CrossRefGoogle Scholar
  7. 7.
    Chemistry and Technology of Rare and Trace Elements, Ed. by K. A. Bol’shakov (Vysshaya shkola, Moscow, 1976), vol. 2 [in Russian].Google Scholar
  8. 8.
    J. Kašpar, M. Graziani, and P. Fornasiero, Handbook on the Physics and Chemistry of Rare Earths: The Role of Rare Earths in Catalysis, Ed. by K. A. Gschneidner, Jr. and L. Eyring (Elsevier, Amsterdam, 2000), vol. 29, p.159.CrossRefGoogle Scholar
  9. 9.
    A. V. Malyutin, E. Yu. Liberman, T. V. Kon’kova, et al., Usp. Khim. Khim. Tekhnol. 26 (8), 33 (2012).Google Scholar
  10. 10.
    M. Boaro and S. Desinan, C. Abate, et al., J. Electrochem. Soc. 158, 22 (2011).CrossRefGoogle Scholar
  11. 11.
    S. V. Chavan and A. K. Tyagi, Mater. Sci. Eng., A 433, 203 (2006).CrossRefGoogle Scholar
  12. 12.
    Z. Hui, G. Nicolas, V. Francoise, et al., Solid State Ionics 160, 317 (2003).CrossRefGoogle Scholar
  13. 13.
    T. Omata, H. Kishimoto, S. Otsuka-Yao-Matsuo, et al., J. Solid State Chem. 147, 573 (1999).CrossRefGoogle Scholar
  14. 14.
    N. Izu, T. Omata, and S. Otsuka-Yao-Matsuo, J. Alloys Compd. 270, 107 (1998).CrossRefGoogle Scholar
  15. 15.
    M. Boaro, A. Pappacena, C. Abate, et al., J. Power Sources 270, 79 (2014).CrossRefGoogle Scholar
  16. 16.
    H. Fujimori, M. Yashima, S. Sasaki, et al., Phys. Rev. B 64, 134104 (2001).CrossRefGoogle Scholar
  17. 17.
    T. Baidya, M. S. Hegde, and J. Gopalakrishnan, J. Phys. Chem. B 111, 5149 (2007).CrossRefGoogle Scholar
  18. 18.
    M. Yashima, K. Morimoto, N. Ishizawa, et al., J. Am. Ceram. Soc. 76, 1745 (1993).CrossRefGoogle Scholar
  19. 19.
    V. V. Popov, A. P. Menushenkov, R. M. Khubbutdinov, et al., J. Phys.: Conf. Ser. 747, 012041 (2016).Google Scholar
  20. 20.
    O. V. Safonova, A. A. Guda, C. Paun, et al., J. Phys. Chem. C 118, 1974 (2014).CrossRefGoogle Scholar
  21. 21.
    E. M. Moroz, Russ. Chem. Rev. 80, 293 (2011).CrossRefGoogle Scholar
  22. 22.
    V. V. Popov, Russ. J. Inorg. Chem. 60, 420 (2015).CrossRefGoogle Scholar
  23. 23.
    A. P. Hammersley, S. O. Svensson, M. Hanfland, et al., High Press. Res. 14, 235 (1996).CrossRefGoogle Scholar
  24. 24.
    V. Petricek, M. Dusek, and L. Palatinus, Z. Kristallogr. 229, 345 (2014).Google Scholar
  25. 25.
    K. V. Klementiev, XANES dactyloscope for Windows, freeware software/xanda.htmlGoogle Scholar
  26. 26.
    K. V. Klementev, J. Phys. D: Appl. Phys. 34, 209 (2001).CrossRefGoogle Scholar
  27. 27.
    M. Newville, J. Synchrotron Rad. 8, 322 (2001).CrossRefGoogle Scholar
  28. 28.
    J. J. Rehr, J. J. Kas, M. P. Prange, et al., C.R. Phys. 10, 548 (2009).CrossRefGoogle Scholar
  29. 29.
    L. Vasylechko, A. Senyshyn, D. Trots, et al., J. Solid State Chem. 180, 1277 (2007).CrossRefGoogle Scholar
  30. 30.
    V. V. Popov, Ya. V. Zubavichus, A. P. Menushenkov, et al., Russ. J. Inorg. Chem. 59, 279 (2014).CrossRefGoogle Scholar
  31. 31.
    V. V. Popov, A. P. Menushenkov, A. A. Yaroslavtsev, et al., J. Alloys Compd. 689, 669 (2016).CrossRefGoogle Scholar
  32. 32.
    B. M. Reddy, A. Khan, P. Lakshmanan, et al., J. Phys. Chem. B 109, 3355 (2005).CrossRefGoogle Scholar
  33. 33.
    M. Yashima, S. Sasaki, Y. Yamaguchi, et al., Appl. Phys. Lett. 72, 182 (1998).CrossRefGoogle Scholar
  34. 34.
    T. Sasaki, Y. Ukyo, K. Kuroda, et al., J. Ceram. Soc. Jpn. 112, 440 (2004).CrossRefGoogle Scholar
  35. 35.
    V. V. Popov, A. P. Menushenkov, Ya. V. Zubavichus, et al., Russ. J. Inorg. Chem. 61, 225 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Popov
    • 1
    • 2
    Email author
  • A. P. Menushenkov
    • 1
  • R. M. Khubbutdinov
    • 1
  • A. A. Yastrebtsev
    • 1
  • A. S. Sharapov
    • 1
  • Ya. V. Zubavichus
    • 2
  • R. D. Svetogorov
    • 2
  • A. L. Trigub
    • 2
  • N. A. Tsarenko
    • 3
  • L. A. Arzhatkina
    • 3
  • V. V. Kurilkin
    • 4
  1. 1.National Research Nuclear University MEPHIMoscowRussia
  2. 2.National Research Center Kurchatov InstituteMoscowRussia
  3. 3.JSC Scientific Research Institute of Chemical Technology (VNIIKhT)MoscowRussia
  4. 4.Peoples’ Friendship University (RUDN)MoscowRussia

Personalised recommendations