Advertisement

Russian Journal of Inorganic Chemistry

, Volume 61, Issue 10, pp 1203–1218 | Cite as

Behavior of HfB2-SiC (10, 15, and 20 vol %) ceramic materials in high-enthalpy air flows

  • E. P. Simonenko
  • A. N. Gordeev
  • N. P. Simonenko
  • S. A. Vasilevskii
  • A. F. Kolesnikov
  • E. K. Papynov
  • O. O. Shichalin
  • V. A. Avramenko
  • V. G. Sevastyanov
  • N. T. Kuznetsov
Synthesis and Properties of Inorganic Compounds

Abstract

HfB2–SiC ceramic samples containing 10, 15, and 20 vol % silicon carbide were prepared by spark plasma sintering. The samples were characterized by X-ray powder diffraction, SEM, and other methods. Their densities and calculated porosities were determined. The behavior of the materials under heating by a subsonic dissociated air flow was studied on a VGU-4 high-frequency inductive plasmatron. The average surface temperatures of the 10 and 15 vol % SiC samples were shown to increase up to 2550–2675°C during heating, due to the generation of surface localities having temperatures of 2600–2700°C (the initial surface temperature was ~1700–1900°C) and the progressive growth of these regions in area. The overall time during which the average surface temperatures of these samples were higher than 2000°C, was about 31–32 min. For the 20 vol % SiC sample, heat removal (when the sample touched a water-cooled holder) was shown to influence the surface temperature and surface temperature distribution. The variation in gas-phase composition over the central area of the sample surface during an experiment was studied using emission spectroscopy. Explanations are proposed to the variation of boron and silicon concentrations in the course of exposure to high-enthalpy flows. The elemental and phase compositions were determined and the microstructures were studied on the surface and sections of samples after long-term (~40-min) exposure to high-enthalpy air flows.

Keywords

ceramic ultra-high-temperature materials HfB2 SiC UHTC SPS spark plasma sintering thermochemical tests high-enthalpy aor flows composite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. P. Simonenko, D. V. Sevast’yanov, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 58, 1669 (2013), doi 10.1134/S0036023613140039CrossRefGoogle Scholar
  2. 2.
    F. Monteverde and R. Savino, J. Am. Ceram. Soc. 95, 2282 (2012).CrossRefGoogle Scholar
  3. 3.
    W. G. Fahrenholtz and G. E. Hilmas, Int. Mater. Rev. 57, 61 (2012).CrossRefGoogle Scholar
  4. 4.
    V. G. Sevast’yanov V.G., E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 58, 1269, doi 10.1134/S003602361311017XGoogle Scholar
  5. 5.
    V. G. Sevastyanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 59, 1298 (2014), doi 10.1134/S0036023614110217CrossRefGoogle Scholar
  6. 6.
    V. G. Sevastyanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 59, 1361 (2014), doi 10.1134/S0036023614120250CrossRefGoogle Scholar
  7. 7.
    E. Zapata-Solvas, D. D. Jayaseelan, P. M. Brown, et al., J. Eur. Ceram. Soc. 34, 3535 (2014).CrossRefGoogle Scholar
  8. 8.
    V. Zamora, M. Nygren, F. Guiberteau, et al., Ceram. Int. B 40, 11457 (2014).CrossRefGoogle Scholar
  9. 9.
    M. Balat-Pichelin, E. Beche, D. Sciti, et al., Ceram. Int. A 40, 9731 (2014).CrossRefGoogle Scholar
  10. 10.
    X. Jin, R. He, X. Zhang, et al., J. Alloys Compd. 566, 125 (2013).CrossRefGoogle Scholar
  11. 11.
    R. He, X. Zhang, and P. Hu, Key Eng. Mater. 512–515, 710 (2012).CrossRefGoogle Scholar
  12. 12.
    C. Carney, A. Paul, S. Venugopal, et al., J. Eur. Ceram. Soc. 34, 1045 (2014).CrossRefGoogle Scholar
  13. 13.
    L. Silvestroni, L. Dalle Fabbriche, and D. Sciti, Mater. Des. 65, 1253 (2015).CrossRefGoogle Scholar
  14. 14.
    L. Silvestroni, D. Sciti, C. Melandri, et al., Mater. Des. 65, 1264 (2015).CrossRefGoogle Scholar
  15. 15.
    X. B. Wang, D. C. Tian, and L. L. Wang, J. Phys.: Condens. Matter 6, 10185 (1994).Google Scholar
  16. 16.
    D. V. Grashchenkov, O. Yu. Sorokin, Yu. E. Lebedeva, and M. L. Vaganova, Russ. J. Appl. Chem. 88, 386 (2015).CrossRefGoogle Scholar
  17. 17.
    Y. Cao, H. Zhang, F. Li, et al., Ceram. Int. 41, 7823 (2015).CrossRefGoogle Scholar
  18. 18.
    Y. Zhang, Y. Zhang, R.-X. Li, et al., J. Taiwan Inst. Chem. Eng. 46, 200 (2015).CrossRefGoogle Scholar
  19. 19.
    N. Patra, D. D. Jayaseelan, and W. E. Lee, Adv. Appl. Ceram., (2015). doi 10.1179/1743676115Y.0000000058Google Scholar
  20. 20.
    S. Chakraborty, D. Debnath, A. R. Mallick, et al., Int. J. Refract. Met. Hard Mater. 52, 176 (2012).CrossRefGoogle Scholar
  21. 21.
    A. Cecere, R. Savino, C. Allouis, and F. Monteverde, Int. J. Heat Mass. Trans. 91, 747 (2015).CrossRefGoogle Scholar
  22. 22.
    M. S. Asl, M. G. Kakroudi, F. Golestani-Fard, and H. Nasiri, Int. J. Refract. Met. Hard Mater. 51, 81 (2015).CrossRefGoogle Scholar
  23. 23.
    M. S. Asl and M. G. Kakroudi, Mater. Sci. Eng., A 625, 385 (2015).CrossRefGoogle Scholar
  24. 24.
    J. Lin, Y. Huang, and H. Zhang, Ceram. Int. 41, 2690 (2015).CrossRefGoogle Scholar
  25. 25.
    Z. Nasiri, M. Mashhadi, and A. Abdollahi, Int. J. Refract. Met. Hard Mater. 51, 216 (2015).CrossRefGoogle Scholar
  26. 26.
    X. Zhang, Y. An, J. Han, et al., RSC Adv. 5, 47060 (2015).CrossRefGoogle Scholar
  27. 27.
    M. S. Asl, M. G. Kakroudi, R. A. Kondolaji, and H. Nasiri, Ceram. Int. 41, 5843 (2015).CrossRefGoogle Scholar
  28. 28.
    K. Shugart and E. Opila, J. Am. Ceram. Soc. 98, 1673 (2015).CrossRefGoogle Scholar
  29. 29.
    M. W. Bird, R. P. Aunea, F. Yu, et al., J. Eur. Ceram. Soc. 33, 2407 (2013).CrossRefGoogle Scholar
  30. 30.
    J. Zou, G.-J. Zhang, J. Vleugels, and O. Van der Biestba, J. Eur. Ceram. Soc. 33, 1609 (2013).CrossRefGoogle Scholar
  31. 31.
    S. Gangireddy, J. W. Halloran, and Z. N. Wing, J. Eur. Ceram. Soc. 33, 2901 (2013).CrossRefGoogle Scholar
  32. 32.
    W. Tan, C. A. Petorak, and R. W. Trice, J. Eur. Ceram. Soc. 34, 1 (2014).CrossRefGoogle Scholar
  33. 33.
    X. X. Jin, X. H. Zhang, J. C. Han, et al., Mater. Sci. Eng., A 588, 175 (2013).CrossRefGoogle Scholar
  34. 34.
    R. He, R. Zhang, Y. Pei, and D. Fang, Int. J. Refract. Met. Hard Mater 46, 65 (2014).CrossRefGoogle Scholar
  35. 35.
    V. G. Sevastyanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 60, 1360 (2015), doi 10.1134/S0036023615110133CrossRefGoogle Scholar
  36. 36.
    D. V. Kolovertnov and I. B. Ban’kovskaya, Glass Phys. Chem. 41, 324 (2015).CrossRefGoogle Scholar
  37. 37.
    T. A. Parthasarathy, R. A. Rapp, M. Opeka, et al., J. Am. Ceram. Soc. 95, 338 (2012).CrossRefGoogle Scholar
  38. 38.
    M. Playez, D. G. Fletcher, J. Marschall, et al., J. Thermophys. Heat Trans. 23, 279 (2009).CrossRefGoogle Scholar
  39. 39.
    J. Marschall, D. A. Pejaković, W. G. Fahrenholtz, et al., J. Thermophys. Heat Trans. 26, 559 (2012).CrossRefGoogle Scholar
  40. 40.
    A. N. Gordeev and A. F. Kolesnikov, Topics of Mechanics: Physicochemical Mechanics of Liquids and Gases (Nauka, Moscow, 2010) [in Russian].Google Scholar
  41. 41.
    A. N. Gordeev and M. I. Yakushin, SAMPE J. 29 (2), 27 (1993).Google Scholar
  42. 42.
    A. N. Gordeev, V. N. Prilepskii, and M. I. Yakushin, Proceedings of Gagarin’s Scientific Readings in Outer Space and Aviation Activities, 1986 (Nauka, Moscow, 1987) [in Russian].Google Scholar
  43. 43.
    A. N. Gordeev, M. I. Yakushin, and N. G. Bykova, Proceedings of the 3rd European Workshop on Thermal Protection Systems: ESTEC, 1998 (Noordwijk, Netherlands, 1998), p. 329.Google Scholar
  44. 44.
    D. E. Wiley, W. R. Manning, and O. Hunter, Jr., J. Less-Common Met. 18, 149 (1969).CrossRefGoogle Scholar
  45. 45.
    T. Kawamura, Mineral. J. (Jpn) 4, 333 (1965).CrossRefGoogle Scholar
  46. 46.
    S. A. Vasil’evskii and A. F. Kolesnikov, in Topics in Mechanics. Liquid, Gas, and Plasma Mechanics (Nauka, Moscow, 2008), p. 95 [in Russian].Google Scholar
  47. 47.
    A. F. Kolesnikov and M. I. Yakushin, Matem. Modelir. 1 (3), 44 (1989).Google Scholar
  48. 48.
    A. N. Zaidel’, V. K. Prokof’ev, S. M. Raiskii, V. A. Slavnyi, and E. Ya. Shreider, Tables of Spectral Lines (Nauka, Moscow, 1969) [in Russian].Google Scholar
  49. 49.
    A. N. Zaidel’, V. K. Prokof’ev, S. M. Raiskii, V. A. Slavnyi, and E. A. Shreider, Zaidel Tables Program Package www.slavna.ru.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. P. Simonenko
    • 1
  • A. N. Gordeev
    • 2
  • N. P. Simonenko
    • 1
  • S. A. Vasilevskii
    • 2
  • A. F. Kolesnikov
    • 2
  • E. K. Papynov
    • 3
    • 4
  • O. O. Shichalin
    • 3
    • 4
  • V. A. Avramenko
    • 3
    • 4
  • V. G. Sevastyanov
    • 1
  • N. T. Kuznetsov
    • 1
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Ishlinsky Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Chemistry, Far-East BranchRussian Academy of SciencesVladivostokRussia
  4. 4.Far-East Federal UniversityVladivostokRussia

Personalised recommendations