Russian Journal of Inorganic Chemistry

, Volume 61, Issue 3, pp 265–272 | Cite as

Synthesis of nanohydroxyapatite in the presence of iron(III) ions

Synthesis and Properties of Inorganic Compounds


The effect of small amounts of iron(III) ions on the morphology, phase composition, and structure of the products of the hydroxyapatite (HAP) synthesis has been studied by electron microscopy, X-ray powder diffraction, and Mossbauer spectroscopy methods. It has been demonstrated that the introduction of dopant iron(III) ions into the reaction mixture at different stages of HAP formation makes it possible to control crystal growth, morphology, and phase composition. The iron ions are not incorporated into the HAP crystal structure; rather, they form their proper nanophase, as well as adsorption clusters on the HAP surface.


Calcium Sulfate Iron Phosphate Dopant Iron Large Quadrupole Splitting Calcium Sulfate Hemihydrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. M. Barinov and V. S. Komlev, Bioceramics Based on Calcium Phosphates (Nauka, Moscow, 2005), p. 10 [in Russian].Google Scholar
  2. 2.
    M. Bohner, Injury 31, D37 (2000).CrossRefGoogle Scholar
  3. 3.
    M. Vallet-Regi, J. Chem. Soc., Dalton Trans., 97 (2001).Google Scholar
  4. 4.
    D. C. Carvalho, L. G. Pinheiro, A. Campos, et al., Appl. Catal., A: Gen., 471, 39 (2014).CrossRefGoogle Scholar
  5. 5.
    Zhenping Qu, Yahui Sun, Dan Chen, and Yi Wang, J. Mol. Catal. A: Chem. 393, 182 (2014).CrossRefGoogle Scholar
  6. 6.
    M. Pogosova, D. Provotorov, A. Eliseev, et al., Dyes Pigments, 113, 96 (2015).CrossRefGoogle Scholar
  7. 7.
    G. Salviulo, M. Bettinelli, U. Russo, et al., J. Mater. Sci., 46, 910 (2011).CrossRefGoogle Scholar
  8. 8.
    Chun-Han Hou, Sheng-Mou Hou, Yu-Sheng Hsueh, et al. Biomaterials 30, 3956 (2009).Google Scholar
  9. 9.
    A. Tampieri, T. D’Alessandro, M. Sandri, et al., Acta Biomater., 8, 843 (2012).CrossRefGoogle Scholar
  10. 10.
    Kunfeng Zhao, Botao Qiao, Junhu Wang, et al., Chem. Commun., 47, 1779 (2012).CrossRefGoogle Scholar
  11. 11.
    H. R. Low, N. Phonthammachai, A. Maignan, et al., Inorg. Chem., 47, 11774 (2008).CrossRefGoogle Scholar
  12. 12.
    I. Mayer, H. Diab, and I. Felner, J. Inorg. Biochem., 129 (1992).Google Scholar
  13. 13.
    I. V. Melikhov, V. F. Komarov, A. V. Severin, et al., Dokl. Phys. Chem., 373, 355 (2000).Google Scholar
  14. 14.
    P. W. Brown, J. Am. Ceram. Soc. 75, 17 (1992).CrossRefGoogle Scholar
  15. 15.
    Unified Water Analysis Methods, Ed. by Yu. Yu. Lur’e (Khimiya, Moscow, 1973) [in Russian].Google Scholar
  16. 16.
    S. S. Gorelik, Yu. A. Skakov, and L. N. Rastorguev, X-ray Powder and Electron-Optical Analysis (MISIS, Moscow, 2002) [in Russian].Google Scholar
  17. 17.
    N. C. Collier, N. B. Milestone, J. Hill, et al., Waste Manage. 26 (2006).Google Scholar
  18. 18.
    S. Scaccia, M. Carewska, A. D. Bartolomeo, et al., Thermochim. Acta, 383, 145 (2002).CrossRefGoogle Scholar
  19. 19.
    J. O. Nriagu, Geochim. Cosmochim. Acta 36, 459 (1972).CrossRefGoogle Scholar
  20. 20.
    B. M. Al-Hasni, G. Mountjoy, and E. Barney, J. Non-Cryst. Solids 380, 141 (2013).CrossRefGoogle Scholar
  21. 21.
    A. S. Posner, N. C. Blumenthal, and F. Betts, in Phosphate Minerals, Ed. by G. O. Nriagu and P. B. Moore (Springer, Berlin, 1984).Google Scholar
  22. 22.
    J. M. Hughes, M. Cameron, and K. D. Crowley, Am. Mineral. 74, 870 (1989).Google Scholar
  23. 23.
    ASTM-41-224, 41-225.Google Scholar
  24. 24.
    J. Herrero, O. Artieda, and W. H. Hudnall, Soil Sci. Soc. Am. J. 73, 1757 (2009).CrossRefGoogle Scholar
  25. 25.
    N. Prieto-Taboada, O. Gómez-Laserna, I. Martínez-Arkarazo, et al., Anal. Chem., 86, 10131 (2014).CrossRefGoogle Scholar
  26. 26.
    H. Weiss and M. F. Bräu, Angew. Chem., Int. Ed. Engl. 48, 3520 (2009).CrossRefGoogle Scholar
  27. 27.
    A. Y. Polyakov, A. E. Goldt, T. A. Sorkina, et al., Cryst. Eng. Commun., 14, 8097 (2012).CrossRefGoogle Scholar
  28. 28.
    C. Díaz-Aguila, M. Morales, E. Baggio-Saitovitch, et al., III Congreso Internacional de Biomateriales BIOMAT’03, 2003.Google Scholar
  29. 29.
    E. I. Suvorova, V. V. Klechkovskaya, V. F. Komarov, et al., Crystallogr. Rep. 51, 881.Google Scholar
  30. 30.
    D. A. Pankratov, Inorg. Mater. 50, 82 (2014).CrossRefGoogle Scholar
  31. 31.
    D. A. Pankratov, A. A. Veligzhanin and Y. V. Zubavichus, Russ. J. Inorg. Chem. 58, 67 (2013).CrossRefGoogle Scholar
  32. 32.
    D. A. Pankratov and Y. M. Kiselev, Russ. J. Inorg. Chem. 54, 1451 (2009).CrossRefGoogle Scholar
  33. 33.
    M. D. Dyar, E. R. Jawin, E. Breves, et al., Am. Mineral., 99, 914 (2014).CrossRefGoogle Scholar
  34. 34.
    J. Mingzhi, C. Xianhao, X. Weiming, et al., Hyperfine Interact., 41, 645 (1988).CrossRefGoogle Scholar
  35. 35.
    M. M. Gadgil and S. K. Kulshreshtha, J. Solid State Chem. 111, 357 (1994).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations