Russian Journal of Inorganic Chemistry

, Volume 61, Issue 2, pp 129–134 | Cite as

Selective hydrothermal microwave synthesis of various manganese dioxide polymorphs

  • R. F. Korotkov
  • A. E. Baranchikov
  • O. V. Boytsova
  • A. E. Goldt
  • S. A. Kurzeev
  • V. K. Ivanov
Synthesis and Properties of Inorganic Compounds

Abstract

Hydrothermal microwave treatment of mixed solutions of potassium permanganate and hexamethylenetetramine within the pH range 0.5–6.9, resulted in various polymorphs of nanocrystalline manganese dioxide: α-MnO2 (cryptomelane), γ-MnO2 (nsutite), β-MnO2 (pyrolusite), and δ-MnO2 (birnessite). The pH values of the medium at which single-phase samples form were determined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. M. Thackeray, Prog. Solid State Chem. 25, 1 (1997).CrossRefGoogle Scholar
  2. 2.
    S. Devaraj and N. Munichandraiah, J. Phys. Chem. C 12, 4406 (2008).CrossRefGoogle Scholar
  3. 3.
    W. F. Wei, X. W. Cui, W. X. Chen, and D. G. Ivey, Chem. Soc. Rev. 40, 1697 (2011).CrossRefGoogle Scholar
  4. 4.
    D. M. Robinson, Y. B. Go, M. Mui, et al., J. Am. Chem. Soc. 135, 3494 (2013).CrossRefGoogle Scholar
  5. 5.
    C. Xu, F. Kang, B. Li, and H. Du, J. Mater. Res. 25, 1421 (2010).CrossRefGoogle Scholar
  6. 6.
    B. S. Yin, S. W. Zhang, H. Jiang, et al., J. Mater. Chem. A 3, 5722 (2015).CrossRefGoogle Scholar
  7. 7.
    H. Huang, S. Sithambaram, C.-H. Chen, et al., Chem. Mater. 22, 3664 (2010).CrossRefGoogle Scholar
  8. 8.
    E. A. Dolgopolova, O. S. Ivanova, V. K. Ivanov, et al., Russ. J. Inorg. Chem. 57, 1303 (2012).CrossRefGoogle Scholar
  9. 9.
    A. D. Yapryntsev, A. E. Baranchikov, L. S. Skogareva, et al., CrystEngComm 17, 2667 (2015).CrossRefGoogle Scholar
  10. 10.
    E. A. Moskalenko, A. A. Sadovnikov, A. E. Baranchikov, et al., Current Microwave Chem. 1 (2), 81 (2014).CrossRefGoogle Scholar
  11. 11.
    O. V. Boytsova, T. O. Shekunova, and A. E. Baranchikov, Russ. J. Inorg. Chem. 60, 546 (2015).CrossRefGoogle Scholar
  12. 12.
    R. F. Korotkov, A. E. Baranchikov, O. V. Boytsova, and V. K. Ivanov, Russ. J. Inorg. Chem. 60, 1299 (2015).CrossRefGoogle Scholar
  13. 13.
    E. A. Dolgopolova, O. S. Ivanova, V. K. Ivanov, et al., Russ. J. Inorg. Chem. 57, 1303 (2012).CrossRefGoogle Scholar
  14. 14.
    K. Yu. Vlasova, A. E. Baranchikov, A. S. Vanetsev, et al., Dokl. Chem. 436 (1), 11 (2011).CrossRefGoogle Scholar
  15. 15.
    A. D. Yapryntsev, A. E. Baranchikov, A. E. Goldt, and V. K. Ivanov, Current Microwave Chem. 3 (1), 3 (2015).CrossRefGoogle Scholar
  16. 16.
    A. D. Yapryntsev, A. E. Baranchikov, A. V. Zabolotskaya, et al., Russ. J. Inorg. Chem. 59, 1383 (2014).CrossRefGoogle Scholar
  17. 17.
    Y.-F. Li, S.-S. Li, D.-L. Zhou, et al., J. Solid State Electrochem. 18, 2521 (2014).CrossRefGoogle Scholar
  18. 18.
    M. J. Tadjer, M. A. Mastro, J. M. Rojo, et al., J. Electron. Mater. 43, 1188 (2014).CrossRefGoogle Scholar
  19. 19.
    D. A. Matolygina, A. E. Baranchikov, V. K. Ivanov, and Yu. D. Tret’yakov, Dokl. Chem. 441 (2), 361 (2011).CrossRefGoogle Scholar
  20. 20.
    V. K. Ivanov, G. P. Kopitsa, A. Ye. Baranchikov, et al., Russ. J. Inorg. Chem. 54 (14), 2091 (2009).CrossRefGoogle Scholar
  21. 21.
    V. K. Ivanov, A. Ye. Baranchikov, G. P. Kopitsa, et al., J. Solid State Chem. 198, 496 (2013).CrossRefGoogle Scholar
  22. 22.
    C. Julien and M. Massot, New Trends in Intercalation Compounds for Energy Storage, Ed. by C. Julien, J. P. Pereira-Ramos, and A. Momchilov (Springer Netherlands, Dordrecht, 2002), p. 235.Google Scholar
  23. 23.
    B. Zachau-Christiansen, K. West, T. Jacobsen, and S. Skaarup, Solid State Ionics 70–71, 401 (1994).CrossRefGoogle Scholar
  24. 24.
    F. Buciuman, F. Patcas, R. Craciun, and D. R. T. Zahn, Phys. Chem. Chem. Phys. 1, 185 (1999).CrossRefGoogle Scholar
  25. 25.
    M.-C. Bernard, A. Hugot-Le Goff, B. V. Thi, and S. C. de Torresi, J. Electrochem. Soc. 140, 3065 (1993).CrossRefGoogle Scholar
  26. 26.
    S. Dhara, C.-P. Liu, S.-F. Chen, et al., J. Raman Spectrosc. 46, 1 (2015).CrossRefGoogle Scholar
  27. 27.
    F. Buciuman, F. Patcas, R. Craciun, and D. R. T. Zahn, Phys. Chem. Chem. Phys. 1, 185 (1999).CrossRefGoogle Scholar
  28. 28.
    L. Balan, C. M. Ghimbeu, L. Vidal, and C. Vix-Guterla, Green Chem. 15, 2191 (2013).CrossRefGoogle Scholar
  29. 29.
    C. Julien, M. Massot, S. Rangan, et al., J. Raman Spectrosc. 33, 223 (2002).CrossRefGoogle Scholar
  30. 30.
    C. Julien, M. Massot, R. Baddour-Hadjean, et al., Solid State Ionics 159, 345 (2003).CrossRefGoogle Scholar
  31. 31.
    T. Gao, H. Fjellvåg, and P. Norby, Anal. Chim. Acta 648, 235 (2009).CrossRefGoogle Scholar
  32. 32.
    C. M. Julien and M. Massot, Mater. Sci. Eng. B 97, 217 (2003).CrossRefGoogle Scholar
  33. 33.
    R. Baddour-Hadjean and J.-P. Pereira-Ramos, Chem. Rev. 110, 1278 (2010).CrossRefGoogle Scholar
  34. 34.
    Q. Gao, S. L. Suib, M. Thomson, and W. Bowden, J. Chem. Eng. Jpn. 36, 1222 (2003).CrossRefGoogle Scholar
  35. 35.
    C. M. Ghimbeu, A. Malak-Polaczyk, E. Frackowiak, and C. Vix-Guterl, J. Appl. Electrochem. 44, 123 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • R. F. Korotkov
    • 1
  • A. E. Baranchikov
    • 1
    • 2
  • O. V. Boytsova
    • 1
    • 2
  • A. E. Goldt
    • 1
    • 2
  • S. A. Kurzeev
    • 1
  • V. K. Ivanov
    • 2
    • 3
  1. 1.Lomonosov Moscow State UniversityVorob’evy gory, MoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.National Research Tomsk State UniversityTomskRussia

Personalised recommendations