Russian Journal of Inorganic Chemistry

, Volume 60, Issue 4, pp 420–427 | Cite as

Formation regularities of dispersed hydrated oxide systems

Synthesis and Properties of Inorganic Compounds

Abstract

A broad range of dispersed systems formed by hydrated oxides of 2-, 3- and 4-charged cations with various electron configurations (s, p, d, and f elements) were studied. Specific and general features of processes taking place during the synthesis of these oxide nanosystems were identified. Correlations between the synthesis conditions and composition, structure, degree of dispersion, morphology, and properties of the resulting hydrated oxides were elucidated. This allows for effective prediction and targeted change of the properties of the resulting materials.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. B. Weiser, Inorganic Colloid Chemistry, vol. II: The Hydrous Oxides and Hydroxides (Wiley, New York, 1935).Google Scholar
  2. 2.
    V. P. Chalyi, Metal Hydroxides (Naukova Dumka, Kiev, 1972) [in Russian].Google Scholar
  3. 3.
    V. A. Dzis’ko, A. P. Karnaukhov, and D. V. Tarasova, Physicochemical Fundamentals for the Synthesis of Oxide Catalysts (Nauka, Novosibirsk, 1978) [in Russian].Google Scholar
  4. 4.
    I. M. Vasserman, Chemical Precipitation from Solutions (Khimiya, Leningrad, 1980) [in Russian].Google Scholar
  5. 5.
    V. V. Popov, in Review Information, Series: Industry-Wide Issues (NIITEKhIM, Moscow, 1991), No. 7 [in Russian].Google Scholar
  6. 6.
    J.-P. Jolivet, M. Henry, and J. Livage, Metal Oxide Chemistry and Synthesis. From Solution to Solid State (Wiley, Chichester, 2000).Google Scholar
  7. 7.
    N. A. Shabanova, V. V. Popov, and P. D. Sarkisov, Chemistry and Technology of Nanodispersed Oxides (Akademkniga, Moscow, 2006) [in Russian].Google Scholar
  8. 8.
    E. Matijevic, Acc. Chem. Res. 14(1), 22 (1981).CrossRefGoogle Scholar
  9. 9.
    E. Matijevic and R. S. Sapieszko, Fine Particles: Synthesis, Characterization, and Mechanisms of Growth. Surfactant Sci. Ser., Ed. by T. Sugimoto (Marcel Dekker, New York, 2000), vol. 92, p. 2.Google Scholar
  10. 10.
    Yu. V. Kolen’ko, V. D. Maksimov, and A. V. Garshev, et al., Russ. J. Inorg. Chem. 49, 1133 (2004).Google Scholar
  11. 11.
    P. E. Meskin, A. I. Gavrilov, V. D. Maksimov, et al., Russ. J. Inorg. Chem. 52, 1648 (2007).CrossRefGoogle Scholar
  12. 12.
    V. V. Popov, E. P. Lebedev, A. P. Tomilov, et al., Zh. Prikl. Khim. 61, 1998 (1988).Google Scholar
  13. 13.
    O. S. Polezhaeva, E. A. Dolgopolova, A. E. Baranchikov, et al., Condens. Matter Interphases 12, 154 (2010).Google Scholar
  14. 14.
    A. C. Pierre, Introduction to Sol-Gel Processing (Kluwer, Boston, 1998).CrossRefGoogle Scholar
  15. 15.
    C. F. Baes and R. E. Mesmer, The Hydrolysis of Cations (Wiley, New York, 1976).Google Scholar
  16. 16.
    G. Wulfsberg, Inorganic Chemistry (University Science Books, Sausalito, 2000).Google Scholar
  17. 17.
    V. V. Popov, Doctoral Dissertation in Chemistry (Russ. Univ. of Chem. Techn., Moscow, 2011).Google Scholar
  18. 18.
    Yu. G. Frolov, N. A. Shabanova, and V. V. Popov, Kolloidn. Zh. 45, 179 (1983).Google Scholar
  19. 19.
    Yu. G. Frolov, N. A. Shabanova, and V. V. Popov, Kolloidn. Zh. 45, 382 (1983).Google Scholar
  20. 20.
    N. A. Shabanova, V. V. Popov, and Yu. G. Frolov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 28(6), 58 (1985).Google Scholar
  21. 21.
    O. Y. Pykhteev and A. A. Efimov, Russ. J. Inorg. Chem. 44, 494 (1999).Google Scholar
  22. 22.
    Y. Xu, D. Wang, H. Lui, et al., Colloid. Surf. A: Physicochem. Eng. Asp. 231, 1 (2003).CrossRefGoogle Scholar
  23. 23.
    L. Spiccia and W. Marty, Inorg. Chem. 25, 266 (1986).CrossRefGoogle Scholar
  24. 24.
    N. N. Kozachek, L. A. Parakhnevich, and A. D. El’tsova, Ukr. Khim. Zh. 41, 212 (1975).Google Scholar
  25. 25.
    J. Lemerle, L. Nejem, and J. Lefebvre, J. Inorg. Nucl. Chem. 42, 17 (1980).CrossRefGoogle Scholar
  26. 26.
    E. Guibal, C. Milot, and J. Roussy, Separation Sci. Tech. 35, 1021 (2000).CrossRefGoogle Scholar
  27. 27.
    V. F. Petrunin, V. V. Popov, H. Zhu, et al., Inorg. Mater. 40, 251 (2004).CrossRefGoogle Scholar
  28. 28.
    V. V. Popov, V. F. Petrunin, S. A. Korovin, et al., Russ. J. Inorg. Chem. 56, 1538 (2011).CrossRefGoogle Scholar
  29. 29.
    V. V. Popov and A. I. Gorbunov, Inorg. Mater. 42, 275 (2006).CrossRefGoogle Scholar
  30. 30.
    A. P. Menushenkov, V. F. Petrunin, V. V. Popov, et al., Ann. Rep. HASYLAB, DESY, Hamburg, Germany (2005).Google Scholar
  31. 31.
    V. V. Popov, E. N. Lebedev, L. M. Antonova, et al., Kolloidn. Zh. 51, 610 (1989).Google Scholar
  32. 32.
    Pauling, L., General Chemistry (Freeman, San Francisco, 1970; Mir, Moscow, 1974).Google Scholar
  33. 33.
    V. V. Popov, V. F. Petrunin, S. A. Korovin, et al., Proceedings of VIII All-Russia Conference “Physical Chemistry of Ultradispersed (Nano) Systems,” Belgorod, 2008 (MIFI, Moscow, 2009), p. 76.Google Scholar
  34. 34.
    M. A. Blesa and E. Matijevic, Adv. Colloid Interface Sci. 20, 173 (1989).CrossRefGoogle Scholar
  35. 35.
    G. P. Demopoulous, Hydrometallurgy 96, 199 (2009).CrossRefGoogle Scholar
  36. 36.
    R. A. Buyanov and O. P. Krivoruchko, Kinet. Katal. 17, 765 (1976).Google Scholar
  37. 37.
    R. A. Buyanov and O. P. Krivoruchko, Izv. Sib. Otd. Akad. Nauk SSSR 14(6), 28 (1982).Google Scholar
  38. 38.
    V. V. Popov and A. I. Gorbunov, Inorg. Mater. 42, 769 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations