Russian Journal of Inorganic Chemistry

, Volume 55, Issue 6, pp 955–958 | Cite as

Phase formation in the Ag2MoO4-MgMoO4-Al2(MoO4)3 system

  • I. Yu. Kotova
  • V. P. Korsun
Physicochemical Analysis of Inorganic Systems

Abstract

The subsolidus region of the Ag2MoO4-MgMoO4-Al2(MoO4)3 ternary salt system has been studied by X-ray phase analysis. The formation of new compounds Ag1 − x Mg1 − x Al1 + x (MoO4)3 (0 ≤ x ≤ 0.4) and AgMg3Al(MoO4)5 has been determined. The Ag1 − x Mg1 − x Al1 + x (MoO4)3 variable-composition phase is related to the NASICON type structure (space group R \( \bar 3 \) c). AgMg3Al(MoO4)5 is isostructural to sodium magnesium indium molybdate of the same formula unit and crystallizes in triclinic system (space group P \( \bar 1 \), Z = 2) with the following unit cell parameters: a = 9.295(7) Å, b = 17.619(2) Å, c = 6.8570(7) Å, α = 87.420(9)°, β = 101.109(9)°, γ = 91.847(9)°. The compounds Ag1 − x Mg1 − x Al1 + x (MoO4)3 and AgMg3Al(MoO4)5 are thermally stable up to 790 and 820°C, respectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. I. Lazoryak, Usp. Khim. 65, 307 (1996).Google Scholar
  2. 2.
    V. B. Kalinin, S. Yu. Stefanovich, and A. Nogai, Izv. Akad. Nauk SSSR, Neorg. Mater. 22(1), 107 (1986).Google Scholar
  3. 3.
    A. M. Golubev, V. B. Kalinin, and B. A. Maksimov, Kristallografiya 44(6), 1014 (1999) [Crystallogr. Rep. 44 (6), 945 (1999)].Google Scholar
  4. 4.
    V. K. Trunov, V. A. Efremov, and Yu. A. Velikodnyi, The Crystal Chemistry and Properties of Double Molybdates and Tungstates (Nauka, Leningrad, 1986) [in Russian].Google Scholar
  5. 5.
    A. K. Ivanov-Shits and I. V. Murin, Solid-State Ionics (S.-Peterb. Gos. Univ., St. Petersburg, 2000) [in Russian].Google Scholar
  6. 6.
    L. M. Plyasova and L. M. Kefeli, Izv. Akad. Nauk SSSR, Neorg. Mater. 3(5), 906 (1967).Google Scholar
  7. 7.
    V. V. Bakakin, R. F. Klevtsova, and L. A. Gaponenko, Kristallografiya 27(1), 38 (1982).Google Scholar
  8. 8.
    R. Kohlmuller and J.-P. Faurie, Bull. Soc. Chim. Fr., No. 11, 4379 (1968).Google Scholar
  9. 9.
    G. D. Tsyrenova, S. F. Solodovnikov, E. G. Khaikina, and E. T. Khobrakova, Zh. Neorg. Khim. 46(12), 2066 (2001) [Russ. J. Inorg. Chem. 46 (12), 1886 (2001)].Google Scholar
  10. 10.
    JCPDS PDF-2 Data base, Card # 56-0288.Google Scholar
  11. 11.
    E. G. Khaikina, O. M. Basovich, and K. M. Khal’baeva, Proceedings of the All-Russia Scientific Conference on Physicochemical Analysis (Makhachkala, 2007), p. 8 [in Russian].Google Scholar
  12. 12.
    A. P. Perepelitsa, A. M. Golub, Yu. V. Badaev, and V. N. Shapoval, Zh. Neorg. Khim. 22(4), 994 (1977).Google Scholar
  13. 13.
    B. I. Lazoryak and V. A. Efremov, Zh. Neorg. Khim. 32(3), 652 (1987).Google Scholar
  14. 14.
    R. F. Klevtsova, A. D. Vasil’ev, N. M. Kozhevnikova, et al., Zh. Strukt. Khim. 34(5), 147 (1993).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • I. Yu. Kotova
    • 1
  • V. P. Korsun
    • 1
  1. 1.Baikal Institute of Nature Management, Siberian BranchRussian Academy of SciencesUlan-UdeBuryat Republic, Russia

Personalised recommendations