Advertisement

Russian Journal of Inorganic Chemistry

, Volume 55, Issue 3, pp 325–327 | Cite as

Oxygen nonstoichiometry of nanocrystalline ceria

  • V. K. Ivanov
  • A. E. Baranchikov
  • O. S. Polezhaeva
  • G. P. Kopitsa
  • Yu. D. Tret’yakov
Synthesis and Properties of Inorganic Compounds

Abstract

Correlation relations between oxygen nonstoichiometry and particle size in nanocrystalline CeO2 − x are revised. The ceria unit cell parameter is shown to increase from 0.5410 to 0.5453 nm as the particle size decreases from 23 to 2.3 nm. The CeO2 − x critical particle size where cerium(IV) is completely reduced to cerium(III) is calculated as 1.1–1.3 nm.

Keywords

Ceria Aqueous Ammonia Oxygen Nonstoichiometry Ceria Sample Ceria Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Tsunekawa, R. Sivamohan, S. Ito, et al., Nanostruct. Mater. 11, 141 (1999).CrossRefGoogle Scholar
  2. 2.
    S. Tsunekawa, R. Sahara, Y. Kawazoe, and K. Ishikawa, Appl. Surf. Sci. 152, 53 (1999).CrossRefGoogle Scholar
  3. 3.
    S. Tsunekawa, K. Ishikawa, Z.-Q. Li, et al., Phys. Rev. Lett. 85, 3440 (2000).CrossRefGoogle Scholar
  4. 4.
    S. Tsunekawa, S. Ito, and Y. Kawazoe, Appl. Phys. Lett. 85, 3845 (2004).CrossRefGoogle Scholar
  5. 5.
    L. J. Wu, H. J. Wiesmann, A. R. Moodenbaugh, et al., Phys. Rev. B: Condens. Matter 69, 125415 (2004).Google Scholar
  6. 6.
    F. Zhang, S.-W. Chan, J. E. Spanier, et al., Appl. Phys. Lett. 80, 127 (2002).CrossRefGoogle Scholar
  7. 7.
    S. Zec, S. Boskovic, B. Kalurerovic, et al., Ceram. Int. 35, 195 (2009).CrossRefGoogle Scholar
  8. 8.
    S. Tsunekawa, J.-T. Wang, and Y. Kawazoe, J. Alloys Compds 408–412, 1145 (2006).CrossRefGoogle Scholar
  9. 9.
    V. K. Ivanov, F. Yu. Sharikov, O. S. Polezhaeva, and Yu. D. Tret’yakov, Dokl. Akad. Nauk, Ser. Khim. 411, 485 (2006) [Dokl. 411, (2006)].Google Scholar
  10. 10.
    V. K. Ivanov, O. S. Polezhaeva, G. P. Kopitsa, et al., Neorg. Mater. 44, 324 (2008).Google Scholar
  11. 11.
    O. S. Polezhaeva, N. V. Yaroshinskaya, and V. K. Ivanov, Zh. Neorg. Khim. 52, 1266 (2007) [Russ. J. Inorg. Chem. 52, (2007)].Google Scholar
  12. 12.
    O. S. Polezhaeva, N. V. Yaroshinskaya, and V. K. Ivanov, Neorg. Mater. 44, 57 (2008).Google Scholar
  13. 13.
    V. Petricek, M. Dusek, and L. Palatinus, Jana2006. The Crystallographic Computing System (Inst. of Physics, Prague, 2006).Google Scholar
  14. 14.
    S. Deshpande, S. Patil, S. V. N. T. Satyanarayana, and S. Seal, Appl. Phys. Lett. 87, 133113 (2005).CrossRefGoogle Scholar
  15. 15.
    D. J. Kim, J. Am. Ceram. Soc. 72, 1415 (1989).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. K. Ivanov
    • 1
  • A. E. Baranchikov
    • 1
  • O. S. Polezhaeva
    • 1
  • G. P. Kopitsa
    • 2
  • Yu. D. Tret’yakov
    • 1
    • 3
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Konstantinov Institute of Nuclear PhysicsRussian Academy of SciencesGatchina, Leningrad oblastRussia
  3. 3.Moscow State UniversityMoscowRussia

Personalised recommendations