Russian Journal of Inorganic Chemistry

, Volume 54, Issue 9, pp 1372–1377 | Cite as

Physicochemical characterization, thermal, and electrical conductivity studies of some transition metal complexes of bis-chelating Schiff base

  • J. T. Makode
  • A. R. Yaul
  • S. G. Bhadange
  • A. S. Aswar
Coordination Compounds


Polychelates of Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and VO(IV) with a new bis-chelating Schiff base derived from 5-acetyl-2,4-dihydroxyacetophenone and isonicotinic acidhydrazide have been synthesized. The resulting polychelates have been characterized by elemental analyses, IR and electronic spectral data, magnetic susceptibility measurements and thermogravimetric analysis. All the polychelates are dark coloured solids and insoluble in water and common organic solvents. Thermogravimetric analyses confirm coordination of water in complexes. Various kinetic and thermodynamic parameters have been evaluated from thermal data. The ligand acts as a bis-tridentate molecule coordinating through deprotonated phenolic/enolic oxygen atoms and azomethine nitrogen atoms. The solid-state conductivity of ligand and its polychelates have been measured in their compressed pellet form and all compounds were found to be semiconducting in nature.


Schiff Base Oxovanadium Acetate Tetrahydrate Isonicotinic Acidhydrazide Electronic Spectral Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Masahirao and F. Mika, Bull. Chem. Soc. Jpn. 69, 679(1996).CrossRefGoogle Scholar
  2. 2.
    A. F. Shoair, A. A. El-Bindary, A. Z. El-Sonabati, and R. M. Younes, Pol. J. Chem., 74, 11047 (2000).Google Scholar
  3. 3.
    R. V. Singh, K. Sharma, and S. C. Joshi, Metal Based Drugs 7, 237 (2000).CrossRefGoogle Scholar
  4. 4.
    R. I. Kureshy, N. H. Khan, S. H. R. Abdi, and K. N. Bhatt, Tetrahedron, No. 4, 1693 (1993).Google Scholar
  5. 5.
    M. R. Maurya, S. Sikarwar, T. Joseph, et al., React. Fun. Polym. 63, 71(2005).CrossRefGoogle Scholar
  6. 6.
    Ahalikedkar, R. K. Chepuri, and J. Zacharias, Chem. Soc., Dalton. Trans., No. 10, 1697 (1997).Google Scholar
  7. 7.
    C. V. Jose and M. M. Lyman, Coord. Chem. Rev. 138, 15 (1995).Google Scholar
  8. 8.
    M. Mikuniya, K. Nakadera, and T. Tokii, Inorg. Chim. Acta 194, 129(1992).CrossRefGoogle Scholar
  9. 9.
    M. R. Maurya, Coord. Chem. Rev. 237, 163 (2003).CrossRefGoogle Scholar
  10. 10.
    A. Balasubramanian and P. Sankaran, Ind. J. Chem. B 20, 989 (1981).Google Scholar
  11. 11.
    A. I. Vogels, Textbook of Quantitative Inorganic Chemistry, 4th Edn. (ELBS, London, 1986).Google Scholar
  12. 12.
    M. R. Maurya, D. C. Antony, S. Gopinathan, and C. Gopinathan, Bull. Chem. Soc. Jpn. 68, 554 (1995).CrossRefGoogle Scholar
  13. 13.
    U. G. Deshpande and J. R. Shah, J. Macromol. Sci. Chem. 160, 67 (1988).Google Scholar
  14. 14.
    R. V. Singh and A. Chaudhari, Indian J. Chem. A 43, 2529 (1988).Google Scholar
  15. 15.
    R. C. Maurya, P. Patel, and D. Sutradhar, Synth. React. Inorg. Met.-Org. Chem. 33(16), 1857 (2003).Google Scholar
  16. 16.
    R. C. Maurya and S. Rajput, J. Mol. Struct. 687, 35 (2004).CrossRefGoogle Scholar
  17. 17.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd Edn. (Willey, New York, 1978).Google Scholar
  18. 18.
    P. S. Mane, S. G. Shirodkar, B. R. Arbad, and T. K. Chondekar, Ind. J. Chem. A 40, 648 (2000).Google Scholar
  19. 19.
    A. S. Aswar and N. S. Bhave, Colloid. Polym. Sci. 269, 547 (1991).CrossRefGoogle Scholar
  20. 20.
    L. J. Paliwal, W. B. Gurnule, and R. B. Kharat, Synth. Rect. Inorg. Met.-Org. Chem. (2000).Google Scholar
  21. 21.
    A. S. Aswar and N. S. Bhave, Polym. Degrad. Stab. 31, 115 (1991).CrossRefGoogle Scholar
  22. 22.
    M. M. Patel and B. K. Patel, Angew. Macromol. Chem. 165, 47 (1986).CrossRefGoogle Scholar
  23. 23.
    B. S. Garg, V. S. Kumar, and M. Reddy, J, J. Ind. Chem. Soc. 32, 726 (1993).Google Scholar
  24. 24.
    A. Syamal and M. M. Singh, React. Funct. Polym. 21, 45 (1993).Google Scholar
  25. 25.
    U. N. Tripati, K. V. Sharma, A. Chturvedi, and T. C. Sharma, Polish. J. Chem. 77, 109 (2000).Google Scholar
  26. 26.
    A. P. Mishra, M. Khare, and S. K. Gautam, Synth. React. Inorg. Met.-Org. Chem. 32, 1485 (2002).CrossRefGoogle Scholar
  27. 27.
    D. U. Warad, C. D. Satish, V. H. Kulkarni, and B. S. Chadrashekhar, Ind. J. Chem. A 39, 415 (2000).Google Scholar
  28. 28.
    M. M. Patel and S. Patil, Synth. React. Inorg. Met.-Org. Chem. 12(3), 203 (1980).Google Scholar
  29. 29.
    U. G. Deshpande and J. R. Shah, Synth. React. Inorg. Met.-Org. Chem. 15(4), 573 (1985).Google Scholar
  30. 30.
    E. S. Freeman and B. Carroll, J., Phys. Chem. 62, 394 (1958).CrossRefGoogle Scholar
  31. 31.
    A. W. Coats and J. P. Redfern, Nature 201, 68 (1964).CrossRefGoogle Scholar
  32. 32.
    A. A. Frost and R. G. Pearson, Kinetic and Mechanics (Wiley, New York, 1961).Google Scholar
  33. 33.
    M. M. Patel and R. J. Manavalan, Macromol. Sci. Chem. A 20, 487 (1983).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • J. T. Makode
    • 1
  • A. R. Yaul
    • 1
  • S. G. Bhadange
    • 1
  • A. S. Aswar
    • 1
  1. 1.Department of ChemistryS.G.B. Amravati UniversityAmravatiIndia

Personalised recommendations