Advertisement

Russian Journal of Inorganic Chemistry

, Volume 53, Issue 14, pp 2103–2170 | Cite as

Nanostructures: Compositions, structure, and classification

  • E. F. Kustov
  • V. I. Nefedov
Article

Keywords

Fullerene Quantum Number Coordination Sphere Symmetry Plane Magic Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Sugimoto, Monodispersed Particles (Elsevier, Amsterdam, 2001).Google Scholar
  2. 2.
    Nanoparticles in Solids and Solutions, Ed. by J. H. Fendler and I. Dekany (Kluwer, Dordrecht, 1996).Google Scholar
  3. 3.
    Clusters of Atoms and Molecules, Ed. by H. Haberland (Springer, Berlin, 1994).Google Scholar
  4. 4.
    G. B. Sergeev, Nanochemistry (Mosk. Gos. Univ., Moscow, 2003) [in Russian].Google Scholar
  5. 5.
    A. D. Pomogailo, A. S. Rozenberg, and A. S. Uflyand, Metal Nanoparticles in Polymers (Khimiya, Moscow, 2000) [in Russian].Google Scholar
  6. 6.
    I. P. Suzdalev and P. I. Suzdalev, Usr. Khim. 70 (2001).Google Scholar
  7. 7.
    M. I. Baraton, Synthesis, Functionalization and Surface Treatment of Nanoparticles (Am. Sci. Publ., Los Angeles, 2002).Google Scholar
  8. 8.
    S. P. Gubin, N. F. Kataeva, and G. B. Khomutov, Izv. Akad. Nauk. Ser. Khim, No. 4, 811 (2005).Google Scholar
  9. 9.
    S. P. Gubin, Yu. A. Koshkarov, G. B. Khomutov, and G. Yu. Yurkov, Usr. Khim 74, 539 (2005).Google Scholar
  10. 10.
    V. V. Gusarov, V. M. Talanov, N. V. Fedorova, and Sh. G. Ammaeva, in Nanoparticles and Nanostructures, Ed. by V. Ya. Shevchenko, (Institute of Silicate Chemistry, St. Petersburg, 2006), p. 18.Google Scholar
  11. 11.
    V. Ya. Shevchenko, A. E. Madison, and V. E. Shudegov, in Nanoparticles and Nanostructures, Ed. by V. Ya. Shevchenko, (Institute of Silicate Chemistry, St. Petersburg, 2006), p. 24.Google Scholar
  12. 12.
    N. J. A. Sloane and K. Teo, J. Chem. Phys. 83, 6520 (1985).Google Scholar
  13. 13.
    N. J. A. Sloane, J. Math. Phys. 28, 1653 (1987).Google Scholar
  14. 14.
    K. Teo and N. J. A. Sloane, Inorg. Chem. 24, 4545 (1985).Google Scholar
  15. 15.
    K. Teo and N. J. A. Sloane, Inorg. Chem. 25, 2315 (1986).Google Scholar
  16. 16.
    O. Echt and K. Sattler, Phys. Rev. Lett. 47, 1121 (1981).Google Scholar
  17. 17.
    J. Muhlbach and R. K. Sattler, Phys. Lett. A 87, 418 (1982).Google Scholar
  18. 18.
    W. D. Knight, Phys. Rev. Lett. 52, 214 (1984).Google Scholar
  19. 19.
    K. Sattler, Jpn. J. Appl. Phys. 32, 1428 (1993).Google Scholar
  20. 20.
    P. Barran, S. Firth, A. J. Stace, and H. W. Kroto, Int. J. Mass. Spectrosc. Ion Proc. 167/168, 127 (1997).Google Scholar
  21. 21.
    J. D. Fukano and C. M. Wayman, J. Appl. Phys. 40, 1656 (1969).Google Scholar
  22. 22.
    M. R. Hoar, P. Pal, and P. P. Wegener, J. Colloid Interface Sci. 75, 126 (1980).Google Scholar
  23. 23.
    J. L. Finney, Nature (London) 266, 126 (1977).Google Scholar
  24. 24.
    J. Farges, M. F. de Feraudy, B. Raoult, and G. Torchet, J. Phys. (Paris) 38, 2 (1977).Google Scholar
  25. 25.
    M. R. Mruzik, S. H. Garofalini, and G. M. Pound, Surf. Sci. 103, 353 (1981).Google Scholar
  26. 26.
    J. J. Burton, Catal. Rev.-Sci. Eng. 9, 209 (1974).Google Scholar
  27. 27.
    F. Banhart, Phil.Trans. R. Soc. London A 362, 2205 (2004).Google Scholar
  28. 28.
    H. Terrones, M. Terrones, F. López-Urias, et al., Phil. Trans. R. Soc. London A 362, 2039 (2004).Google Scholar
  29. 29.
    Subramoney, Adv. Mater. 10, 1157 (1998).Google Scholar
  30. 30.
    S. Guha and K. Nakamoto, Coord. Chem. Rev. 249, 1111 (2005).Google Scholar
  31. 31.
    A. V. Eletskii and B. M. Smirnov, Usr. Fiz. Nauk 165 (1995).Google Scholar
  32. 32.
    A. L. Ivanovskii, Nanotubular Forms of Matter (Inst. Khim. Tverd. Tela, Yekaterinburg, 1999) [in Russian].Google Scholar
  33. 33.
    P. N. D’yachkov, Carbon Nanotubes (Binom, Moscow, 2006) [in Russian].Google Scholar
  34. 34.
    C. N. R. Rao, et al., Mater. Sci. Eng. R15, 209 (1995).Google Scholar
  35. 35.
    E. F. Kustov, S. Yu. Zakharchuk, and V. A. Ligachev, Fiz. Tv. Tela 37, 595 (1994).Google Scholar
  36. 36.
    E. F. Kustov, S. Yu. Zakharchuk, and V. A. Ligachev, Fiz. Tv. Tela 38, 1534 (1994).Google Scholar
  37. 37.
    E. F. Kustov, S. U. Zaharchuk, and V. A. Ligachev, Mol. Mater. 8, 151 (1996).Google Scholar
  38. 38.
    E. F. Kustov, S. U. Zaharchuk, and V. A. Ligachev, Fullerenes and Atomic Clusters (St. Petersburg, 1995), p. 93.Google Scholar
  39. 39.
    E. F. Kustov, Foundations of Solid-State Physics (MEI, Moscow, 2002) [in Russian].Google Scholar
  40. 40.
    E. F. Kustov, I. M. Petrushko, and M. I. Petrushko, Proceedings of International Conference on Functional Materials, Ukraine, 2005, p. 265.Google Scholar
  41. 41.
    E. F. Sheka and V. A. Zaets, Zh. Fis. Khim. 79, 2250 (2005).Google Scholar
  42. 42.
    V. V. Zverev and V. I. Kovalenko, Zh. Fis. Khim. 80, 110 (2006).Google Scholar
  43. 43.
    A. V. Eletskii and B. M. Smirnov, Usp. Fiz. Nauk 161, 7 (1993).Google Scholar
  44. 44.
    V. Ya. Shevchenko, M. I. Samoilivich, A. L. Talis, and A. E. Madison, Glass. Phys. Chem. 30(6), 732 (2004).Google Scholar
  45. 45.
    V. Ya. Shevchenko, M. I. Samoilivich, A. L. Talis, and A. E. Madison, Glass. Phys. Chem. 31(2), 259 (2005).Google Scholar
  46. 46.
    A. L. Tallis, Kristallografiya 47(5), 775 (2002).Google Scholar
  47. 47.
    V. Ya. Shevchenko and A. E. Madison, Glass. Phys. Chem. 32(1), 118 (2006).Google Scholar
  48. 48.
    V. Ya. Shevchenko, M. I. Samoilivich, A. L. Talis, and A. E. Madison, Glass. Phys. Chem. 31(3), 402 (2005).Google Scholar
  49. 49.
    M. I. Samoilovich and A. L. Talis, Proceedings of 10th International Conference “High Technologies in Russian Industry” (Izd. OAO TsNITI “Tekhmash”, Moscow, 2004) [in Russian].Google Scholar
  50. 50.
    I. P. Suzdalev, Nanotechnology: Physical Chemistry of Clusters, Nanostructures, and Nanomaterials (Komkniga, Moscow, 2005) [in Russian].Google Scholar
  51. 51.
    V. A. Polukhin, Modeling of Nanostructures and Precurosor States (Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2004) [in Russian].Google Scholar
  52. 52.
    M. Hamermesh, Group Theory and Its Application to Physical Problems (Addison-Wesley, London, 1964).Google Scholar
  53. 53.
    E. F. Kustov and V. I. Nefedov, Dokl. Phys. Chem. 409(1), 188 (2006).Google Scholar
  54. 54.
    E. F. Kustov and V. I. Nefedov, Dokl. Phys. Chem. 410(1), 263 (2006).Google Scholar
  55. 55.
    E. F. Kustov and V. I. Nefedov, Zh. Neorg. Khim. 51(8), 1368 (2006).Google Scholar
  56. 56.
    E. F. Kustov and V. I. Nefedov, Zh. Neorg. Khim. 51(11), 1906 (2006).Google Scholar
  57. 57.
    E. F. Kustov and V. I. Nefedov, Dokl. Phys. Chem. 412(2), 29 (2006).Google Scholar
  58. 58.
    E. F. Kustov and V. I. Nefedov, Dokl. Phys. Chem. 412(2), 23. (2006).Google Scholar
  59. 59.
    E. F. Kustov and V. I. Nefedov, Zh. Neorg. Khim. 52(2), 258 (2007).Google Scholar
  60. 60.
    E. F. Kustov and V. I. Nefedov, Zh. Neorg. Khim. 52(1), 76 (2007).Google Scholar
  61. 61.
    E. F. Kustov and V. I. Nefedov, Dokl. Phys. Chem. 416(1), 243 (2007).Google Scholar
  62. 62.
    E. F. Kustov and V. I. Nefedov, Dokl. Phys. Chem. 415(1), 178 (2007).Google Scholar
  63. 63.
    V. I. Nefedov and E. F. Kustov, in White Book: Studies of Nanoparticles, Nanostructures, and Nanocomposites in the Russian Federation (Nauchnyi sovet po nanomaterialam RAN, Moscow, 2006), p. 35 [in Russian].Google Scholar
  64. 64.
    E. F. Kustov and V. I. Nefedov, Dokl. Phys. Chem. 414(2), 150 (2007).Google Scholar
  65. 65.
    V. I. Nefedov and E. F. Kustov, in Second All-Russia Symposium of Scientists, Engineers, and Manufacturers (Korr. “Rosnanotekh”, RAN, Moscow, 2008) [in Russian].Google Scholar
  66. 66.
    E. F. Kustov, J. Comput. Theor. Nanosci. 5, 317 (2008).Google Scholar
  67. 67.
    L. D. Landau and E. M. Lifshits, Quantum Mechanics. Nonrelatistic Theory (Fizmatgiz, Moscow, 1963) [in Russian].Google Scholar
  68. 68.
    V. G. Yarzhemskii and E. N. Murav’ev, Dokl. Akad. Nauk SSSR 278, 945 (1984).Google Scholar
  69. 69.
    V. G. Yargemsky, Int. J. Quantum Chem. 80, 133 (2000).Google Scholar
  70. 70.
    E. F. Kustov, V. G. Yarzhemskiy, and V. I. Nefedov, Int. J. Theor. Phys. 45(12), 2305 (2006).Google Scholar
  71. 71.
    E. F. Kustov, V. I. Nefedov, and V. G. Iargemskiy, Ing. Phys., No. 1, 1 (2007).Google Scholar
  72. 72.
    G. F. Koster et al., Properties of the Thirty Two Point Groups. Press (Massachusetts, Cambridge, 1963).Google Scholar
  73. 73.
    A. L. Ivanovskii, Zh. Neorg. Khim 50(9), 1514 (2005).Google Scholar
  74. 74.
    M. Deza, P. W. Fowler, M. Shtrogrin, and K. Vietze, J.Chem. Inf. Comput. Sci. 40, 1325 (2000).Google Scholar
  75. 75.
    H. Terrones and M. Terrones, Phys. Rev. B 55, 9969 (1997).Google Scholar
  76. 76.
    E. A. Belenkov, Ixv. Cheliabinsk. Nauchn. Cent, No. 1(14), 12 (2002).Google Scholar
  77. 77.
    P. R. C. Kent, M. D. Towler, R. J. Needs, and G. Bajagap, Phys. Rev. B 62, 15394 (2001).Google Scholar
  78. 78.
    Raghavachari, B. Zang, J. A. Pople, et al., Chem. Phys. Lett. 220, 4385 (1994).Google Scholar
  79. 79.
    Z. Chen, H. Jiao, M. Burl, et al., Theor. Chem. Acta 106, 352 (2001).Google Scholar
  80. 80.
    S. Itoh and S. Ihara, Phys. Rev. B 49, 13970 (1994).Google Scholar
  81. 81.
    T. Guo, M. D. Diener, Y. Chai, et al., Science 257, 1661 (1992).Google Scholar
  82. 82.
    N. V. Belov, Zh. Strukt. Khim. 1, 39 (1960).Google Scholar
  83. 83.
    M. Cote, J. C. Grossman, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 81, 697 (1998).Google Scholar
  84. 84.
    R. Ehlich, P. Landenberger, and Y. Prinzbach, J. Chem. Phys. 115, 5830 (2001).Google Scholar
  85. 85.
    A. Hirsch, Z. Chen, and H. Jiao, Angew. Chem. Int. Ed. Engl. 39, 3915 (2000).Google Scholar
  86. 86.
    O. P. Charkin, N. M. Klimenko, and D. O. Charkin, Zh. Neorg. Khim. 53(5), (2008).Google Scholar
  87. 87.
    H. Kietzmann, R. Rochov, G. Gantefor, et al., Phys. Rev. Lett. 81, 5378 (1998).Google Scholar
  88. 88.
    L. Xin and Ch. Zhonfang, Chem. Rev. 05, 3643 (2005).Google Scholar
  89. 89.
    S. Coha and K. Nakamoto, Coord. Chem. Rev. 249, 1111 (2005).Google Scholar
  90. 90.
    R. A. Jishi, M. S. Dresselhaus, G. Dresselhaus, et al., Chem. Phys. Lett. 206, 187 (1993).Google Scholar
  91. 91.
    D. E. Manolopoulos and P. W. Folwer, J. Chem. Phys. 96, 1603 (1992).Google Scholar
  92. 92.
    K. Kobayashi, S. Nagasi, and T. Akasaka, Chem. Phys. Lett. 245, 230 (1995).Google Scholar
  93. 93.
    D. L. Strout, J. Phys. Chem. A 104, 3364 (2000).Google Scholar
  94. 94.
    H. Prinzbach, A. Weller, Landerbery, et al., Nature 407, 60 (2000).Google Scholar
  95. 95.
    A. Hirsh, Z. Chen, and H. Jiao, Angew. Chem. Int. Ed. 39, 3915 (2000).Google Scholar
  96. 96.
    P. W. Fowler and J. Wolrich, Chem. Phys. Lett. 127, 78 (1986).Google Scholar
  97. 97.
    K. T. Nicholson, K. Z. Zhang, and M. M. B. Holl, J. Am. Chem. Soc. 121, 3232 (1999).Google Scholar
  98. 98.
    J. N. Greely and M. M. B. Holl, Inorg. Chem. 37, 6014 (1998).Google Scholar
  99. 99.
    E. F. Kustov and V. I. Nefedov, Dokl. Phys. Chem. 420 (1), 100 (2008).Google Scholar
  100. 100.
    X. Lu and Z. Chen, Chem. Rev. 105, 3643 (2005).Google Scholar
  101. 101.
    P. W. Fowler, J. Chem. Soc., Faraday Trans. 87, 1945 (1991).Google Scholar
  102. 102.
    K. Kikuchi, N. Nakamara, T. V. Kubayashi, et al., Nature 357, 142 (1992).Google Scholar
  103. 103.
    Z. Chen, H. Jiao, M. Buhl, et al., Teor. Chem. Acc. 106, 352 (2001).Google Scholar
  104. 104.
    Jun-Aihara, Internet Electron. J. Mol. Design 1(5), 236 (2002).Google Scholar
  105. 105.
    R. Ette, I. Chao, F. Diederich, et al., Nature 357(6340), 149 (1991).Google Scholar
  106. 106.
    A. K. Kikuchi, N. Nacumani, T. Wakabayushi, et al., Nature 357(6373), 142 (1992).Google Scholar
  107. 107.
    M. Cote, J. C. Grossman, S. G. Louie, and M. L. Cohen, Bull. Am. Phys. Soc., 42, 270 (1997).Google Scholar
  108. 108.
    J. C. Grossman, M. Cote, S. G. Louie, and M. L. Cohen, Bull. Am. Phys. Soc. 42, 1576 (1997).Google Scholar
  109. 109.
    J. C. Grossman, M. Cote, S. G. Louie, and M. L. Cohen, Chem. Phys. Lett. 284, 344 (1998).Google Scholar
  110. 110.
    A. Goel, J. B. Howard, and B. J. Vander Sande, Carbon 42, 1907 (2004).Google Scholar
  111. 111.
    A. N. Enyashin and A. L. Ivanovskii, Fiz. Tverd. Tela 49, 2 (2007).Google Scholar
  112. 112.
    I. Narita, T. Oku, T. Suganumo, et al., J. Mater. Chem. 11, 1761 (2001).Google Scholar
  113. 113.
    Q. Ru, M. Okamoto, Y. Kondo, and K. Takayanagi, Chem. Phys. Lett. 259, 425 (1996).Google Scholar
  114. 114.
    B. W. Smith, M. Montioux, and D. E. Luzzi, Nature 396, 323 (1998).Google Scholar
  115. 115.
    B. W. Smith, M. Montioux, and D. E. Luzzi, Chem. Phys. Lett. 315, 31 (1999).Google Scholar
  116. 116.
    A. N. Khlobystov, D. A. Britz, A. Arbadan, and G. Briggs, Phys.Rev. Lett. 92, 245507 (2003).Google Scholar
  117. 117.
    A. Oshiyama, S. Okuda, and S. Saito, Physica B 323, 21 (2002).Google Scholar
  118. 118.
    Y. Liu, R. O. Jones, X. Zhao, and Y. Ando, Phys. Rev. B: 68, 125413 (2003).Google Scholar
  119. 119.
    J. Lu, S. Nagase, Z. Pan, Q. Wei, et al., Int. J. Mod. Phys. A 17, 4667 (2003).Google Scholar
  120. 120.
    Z. X. Zhang and L. Peng, Phys. Rev. B: 68, 121402 (2003).Google Scholar
  121. 121.
    A. A. Sofronov, V. V. Ivanovskaya, Y. N. Marukin, and A. L. Ivanovskiy, Chem. Phys. Lett. 351, 35 (2002).Google Scholar
  122. 122.
    J. P. Perdew, K. Burk, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
  123. 123.
    A. V. Solov’yov, J-P. Connerade, and W. Greiner, Proceedings of International Symposium on Atomic Cluster Collisions (Russia, St. Petersburg, 2003).Google Scholar
  124. 124.
    C. Guet, P. Hobza, F. Spiegelman, and F. David, NATO Advanced Study Institute, Session LXXIII, Summer School “Atomic Clusters and Nanoparticles,” Les Houches, France, 2000 (EDP Sciences and Springer, Berlin, 2001).Google Scholar
  125. 125.
    A. V. Finkelshtein and O. B. Ptizin, Physics of Protein (Mosk. Gos. Univ., Moscow, 2002).Google Scholar
  126. 126.
    H. Haberland et al., Cluster of Atoms and Molecules (Springer Ser. Chem. Phys., Berlin, 1994), Vol. 52.Google Scholar
  127. 127.
    I. A. Solov’yov, A. V. Solov’yov, W. Greiner, et al., Phys. Rev. Lett. 90, 053401 (2003).Google Scholar
  128. 128.
    I. A. Solov’yov, A. V. Solov’yov, and W. Greiner, Phys. Rev. A, 65, 053203 (2002).Google Scholar
  129. 129.
    A. G. Lyalin, A. V. Solov’yov, and W. Greiner, Phys. Rev. A 65, 043202 (2002).Google Scholar
  130. 130.
    A. G. Lyalin, I. A. Solov’yov, A. V. Solov’yov, and W. Greiner, Phys. Rev. A 67, 063203 (2003).Google Scholar
  131. 131.
    A. Matveentsev, A. G. Lyalin, I. A. Solov’yov, et al., Int. J. Mod. Phys. E 12, 81 (2003).Google Scholar
  132. 132.
    A. Koshelev, I. A. Shutovich, I. A. Solov’yov, et al., Proceedings of International Workshop “From Atomic To Nano-Scale, Old Dominion University, 184 (2003).Google Scholar
  133. 133.
    T. Ikeshoji, Prog. Theor. Phys. 138, 234 (2000).Google Scholar
  134. 134.
    W. A. Heer, Rev. Mod. Phys. 65, 611 (1993).Google Scholar
  135. 135.
    Cluster of Atoms and Molecules. Theory, Experiment and Clusters of Atoms, Ed. by H. Haberland, Springer Ser. Chem. Phys. 52 (Springer, Berlin, 1994).Google Scholar
  136. 136.
    O. Echt, O. Kandler, T. Leisner, et al., J. Chem. Soc. Faraday. Trans. 86, 2411 (1990).Google Scholar
  137. 137.
    J. Saito, M. Ito, and I. Katakuze, Z. Phys. D((1–4)), 189 (1991).Google Scholar
  138. 138.
    C. Luder, D. Precus, and M. Veleyrakes, Laser Chem 17, 109 (1997).Google Scholar
  139. 139.
    O. Kostko, B. Huber, M. Moseler, and B. Isendorf, Phys. Rev. Lett. 98, 043401 (2007).Google Scholar
  140. 140.
    H. Haberland, Yh. Hippler, J. Donges, et al., Phys. Rev. Lett. 94, 035701 (2005).Google Scholar
  141. 141.
    M. Maier, G. Wrigge, A. Hoffmann, et al., Phys. Rev. Lett. 96, 117405 (2006).Google Scholar
  142. 142.
    G. Wrigge, A. Hoffmann, and B. Isendorf, Phys. Rev. A 65, 063201 (2002).Google Scholar
  143. 143.
    O. Kostko, N. Morgner, M. A. Hoffmann, and B. Isendorf, Eur. Phys. J. D 34, 133 (2005).Google Scholar
  144. 144.
    H. Haberland, Optical and Thermal Properties of Sodium Clusters in Metal Clusters, Wiley Ser. Theor. Chem. (Wiley, Chichester, 1999).Google Scholar
  145. 145.
    O. Cheshnovsky, G. Wrigge, O. Kostko, and B. Isendorf, J. Chem. Phys. 123, 221102 (2005).Google Scholar
  146. 146.
    M. Schmidt and H. Haberland, C. R. Phys. 3, 327 (2002).Google Scholar
  147. 147.
    B. Yoon, N. Koskinen, B. Huber, et al., Chem. Phys. Chem. 8, 157 (2007).Google Scholar
  148. 148.
    T. Irawan, D. Boecker, F. Ghaleh, et al., Appl. Phys. A 82, 81 (2006).Google Scholar
  149. 149.
    B. Raoult, J. Farges, M. F. Feraudy, and G. Torchet, Phil. Mag. 60(6), 881 (1989).Google Scholar
  150. 150.
    G. S. Zhdanov, Solid-State Physics (Mosk. Gos. Univ., Moscow, 1961) [in Russian].Google Scholar
  151. 151.
    I. P. Stolyarov, Yu. V. Gaugash, G. N. Kryukova, et al., Izv. Akad. Nauk. Ser. Khim., No. 6, 1147 (2004).Google Scholar
  152. 152.
    J. W. A. Van der Velden, F. A. Volenbrock, J. J. Bour, et al., Recl. Trav. Chim. Pays-Bas 100(4), 148 (1981).Google Scholar
  153. 153.
    V. G. Albano, A. Geriotti, P. Chini, et al., J. Chem. Soc. Chem. Commun., No. 20, 859 (1975).Google Scholar
  154. 154.
    G. Schmid, Chem. Rev. 92(8), 1709 (1992).Google Scholar
  155. 155.
    R. G. Wallenberg, J. O. Bovin, A. K. Petford-Long, and D. J. Schmid, Ultramicroscopy 20, 71 (1986).Google Scholar
  156. 156.
    V. V. Blagutina, A. I. Kokorin, V. P. Oleshko, and V. Ya. Shafirovich, Dokl. Akad. Nauk. USSR. 14(4), 882 (1990).Google Scholar
  157. 157.
    J. O. Malm, J. O. Bovin, A. K. Petford-Long, et al., Angew. Chem. Int. Ed. Engl. 27, 555 (1988).Google Scholar
  158. 158.
    N. T. Tran, D. R. Powell, and L. F. Dahl, Angew. Chem., Int. Ed. Engl. 9(22), 4121 (2000).Google Scholar
  159. 159.
    G. Schmid, B. Morun, and J. O. Malm, Angew. 92(6), 772 (1989).Google Scholar
  160. 160.
    M. N. Vargaftik, V. P. Zagorodnikov, I. P. Stolarov, et al., J. Chem. Soc., Chem. Commun., No. 14, 937 (1985).Google Scholar
  161. 161.
    M. N. Vargaftik, I. I. Moiseev, D. I. Kochubei, and K. I. Zamoraev, Faraday Discuss. 92, 13 (1991).Google Scholar
  162. 162.
    P. Jena and A. W. Costleman, Proc. Natl. Acad. Sci. USA 106, 10560 (2006).Google Scholar
  163. 163.
    G. N. Kulkarni, P. J. Thomas, and C. N. R. Rao, Pure Appl. Chem. 74(9), 581 (2002).Google Scholar
  164. 164.
    V. N. Soloviev, A. Eichhoffer, D. Fenske, and U. Banin, J. Am. Chem. Soc. 122, 2673 (2000).Google Scholar
  165. 165.
    L. Manna, E. C. Sher, and A. P. Alivisatos, J. Am. Chem. Soc. 122, 12700 (2000).Google Scholar
  166. 166.
    L. Del Bianco, A. Hernando, E. Bonetti, and E. Navarro, Phys. Rev. B: 56, 8894 (1997).Google Scholar
  167. 167.
    N. Saegusa and M. Kusunoki, Jpn. J. Appl. Phys. 29, 876 (1990).Google Scholar
  168. 168.
    A. M. Afanas’ev, I. P. Suzdalev, and M. Ya. Gen, et al., J. Exr. Theor. Phys. 58, 115 (1970).Google Scholar
  169. 169.
    B. K. Rao, S. R. de Debiaggi, and P. Jena, Phys. Rev. B: 64, 024418 (2001).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Moscow Power Engineering Institute (Technical University)MoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations