Russian Journal of Inorganic Chemistry

, Volume 53, Issue 12, pp 1948–1963 | Cite as

Electrical conductivity of aqueous acids in binary and ternary water-electrolyte systems

  • A. A. Ivanov
Physical Chemistry Of Solutions

Abstract

We analyze electrical conductivity data for aqueous solutions of strong and weak acids over a wide range of concentrations at various temperatures. Electrical conductivity isotherms in these solutions are characterized by peaks, whose parameters correlate with the molecular structure of solutions. On the basis of the concentration dependence of the activation energy of electrical conductivity, the acid solutions are divided into two groups. One includes HIO3, H2SO4, and H3PO4; the other includes HCl, HBr, HI, HClO4, HNO3, and carboxylic acids. We show that anomalous proton migration is operative only in low-concentration solutions until their concentration reaches the peak on conductivity isotherms. The effect of extrinsic ions on proton mobility and on conductivity in acid-salt-water systems is considered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Kohlrausch and L. Holborn, Das Leitvermogen der Elektrolyte (Leipzig, 1916).Google Scholar
  2. 2.
    P. Walden, Das Leitvermogen des Losungen. Handbuch (Ostwald-Drucker, Leipzig, 1924).Google Scholar
  3. 3.
    M. A. Klochko, Electrolytic Conductivity of Liquid Systems. Introduction to Physicochemical Analysis (Akad. Nauk SSSR, Moscow, 1940) [in Russian].Google Scholar
  4. 4.
    T. Erdey-Gruz, Transport Phenomena in Aqueous Solutions (Akademiai Kiado, Budapest, 1974; Mir, Moscow, 1976).Google Scholar
  5. 5.
    Modern Aspects of Electrochemistry, Ed. by J. Bockris and B. Conway (London, 1964; Mir, Moscow, 1967).Google Scholar
  6. 6.
    O. Ya. Samoilov, The Structure of Aqueous Electrolytes and Hydration of Ions (Akad. Nauk SSSR, Moscow, 1957) [in Russian].Google Scholar
  7. 7.
    E. S. Librovich, V. P. Sakun, and N. D. Sokolov, in Hydrogen Bond, Ed. by N. D. Sokolov (Nauka, Moscow, 1981), p. 174 [in Russian].Google Scholar
  8. 8.
    E. S. Kryachko, Proton Transpot in Ice and Water: Experiment and Calculations (Preprint of the Inst. of Theoretical Physics, Kiev, no. ITF-85-67R, 1985) [in Russian].Google Scholar
  9. 9.
    E. S. Kryachko, Proton Transport in Ice and Water: Theoretical Approaches (Preprint of the Inst. of Theoretical Physics, Kiev, no. ITF-85-78R, 1985) [in Russian].Google Scholar
  10. 10.
    A. A. Kornyshev, A. M. Kuznetsov, E. Spohr, and J. Ulstrup, J. Phys. Chem. B 107(15), 3351 (2003).CrossRefGoogle Scholar
  11. 11.
    R. Robinson and R. Stockes, Electrolyte Solutions (London, 1959; Inostrannaya Literatura, Moscow, 1963).Google Scholar
  12. 12.
    D. A. Lown and M. R. Thirsk, Trans. Faraday Soc., No. 67, 132 (1971).Google Scholar
  13. 13.
    Intern. Crit. Table 6, 230.Google Scholar
  14. 14.
    V. Ya. Anosov, M. N. Ozerova, and Yu. Ya. Fialkov, The Fundamentals of Physicochemical Analysis (Nauka, Moscow, 1976) [in Russian].Google Scholar
  15. 15.
    D. Eizenberg and V. Kautsman, The Structure and Properties of Water (Gidrometeoizdat, Leningrad, 1975) [in Russian].Google Scholar
  16. 16.
    F. Korber, Z. Phys. Chem. 67(2), 212 (1909).Google Scholar
  17. 17.
    S. Tammann and W. Tofaute, Z. Anorg. Allg. Chem. 182(4), 353 (1929).CrossRefGoogle Scholar
  18. 18.
    R. A. Horne, J. Chem. Phys. 39, 2666 (1963).CrossRefGoogle Scholar
  19. 19.
    G. Hamann and W. Strauss, Trans. Faraday Soc. 51, 1684 (1955).CrossRefGoogle Scholar
  20. 20.
    E. U. Franck, D. Hartmann, and F. Hensel, Disk. Farad. Soc. 39, 200 (1965).CrossRefGoogle Scholar
  21. 21.
    W. A. Zisman, Phys. Rev. 39(1), 151 (1932).CrossRefGoogle Scholar
  22. 22.
    D. A. Lown and H. R. Thirsk, Trans. Faraday Soc., No. 67, 149 (1971).Google Scholar
  23. 23.
    E. G. Larionov, Izv. Sib. Otd. Akad. Nauk, Ser. Khim. Nauk, No. 12, 3 (1976).Google Scholar
  24. 24.
    D. Lown and H. R. Thirsk, Lord Wynne-Jones Trans. Faraday Soc., No. 66, 51 (1970).Google Scholar
  25. 25.
    A. Quist and W. Marshall, J. Phys. Chem. 72(9), 3122 (1968).CrossRefGoogle Scholar
  26. 26.
    A. Quist, W. Marshall, and H. Jolley, J. Phys. Chem. 69(8), 2727 (1965).CrossRefGoogle Scholar
  27. 27.
    B. P. Golubev, et al., Electrophysicae Methods of Investigation of Heat Transfer Agents (Energoatomizdat, Moscow, 1985) [in Russian].Google Scholar
  28. 28.
    A. Eberz, Dissertation, (Karlsruhe, 1987).Google Scholar
  29. 29.
    V. M. Valyashko and A. A. Ivanov, Zh. Neorg. Khim. 24(12), 2752 (1979).Google Scholar
  30. 30.
    L. E. Krutilova, et al., Ukr. Khim. Zh. 42(9), 925 (1976).Google Scholar
  31. 31.
    M. A. Klochko and M. M. Godneva, Zh. Neorg. Khim. 42(9), 2127 (1959).Google Scholar
  32. 32.
    E. G. Hill and A. P. Sirkar, Proc. Roy. Soc. A83, 130 (1910).Google Scholar
  33. 33.
    N. I. Gusev and P. N. Palei, Zh. Fiz. Khim. 45(5), 1164 (1971).Google Scholar
  34. 34.
    H. E. Darling, J. Chem. Eng. Data 9(3), 421 (1964).CrossRefGoogle Scholar
  35. 35.
    H. Moore and W. Blum, J. Res. Bur. Standards USA 5(2), 255 (1930).Google Scholar
  36. 36.
    I. N. Maksimova, et al., in The Properties of Electrolytes of Chemical Current Sources (Energiya, Leningrad, 1975), p. 79 [in Russian].Google Scholar
  37. 37.
    A. Diego, J. Madariga, and E. Chapela, J. Chem. Eng. Data 42, 202 (1997).CrossRefGoogle Scholar
  38. 38.
    R. Corkam and J. Milne, Can. J. Chem. 56(13), 1832 (1978).CrossRefGoogle Scholar
  39. 39.
    A. A. Ivanov, et al., Zh. Neorg. Khim. 29(8), 2119 (1984).Google Scholar
  40. 40.
    C. Mason and J. Culvern, J. Am. Chem. Soc. 71(7), 2387 (1949).CrossRefGoogle Scholar
  41. 41.
    Timmermans (London, 1960), Vol. 4.Google Scholar
  42. 42.
    The Chemist’s Handbook (Khimiya, Moscow, 1964), Vol. 3 [in Russian].Google Scholar
  43. 43.
    L. Onsager, Ann. Acad. Sci. New York 46, 265 (1945).Google Scholar
  44. 44.
    Ya. I. Frenkel’, The Kinetic Theory of Liquids (Akad. Nauk SSSR, Moscow, 1945) [in Russian].Google Scholar
  45. 45.
    S. Glasstone, K. Laidler, and H. Eyring, The Theory of Rate Processes (New York, 1941; Inostrannaya Literatura, Moscow, 1948).Google Scholar
  46. 46.
    R. Haase and P. Sauermann, Z. Phys. Chem. 48, 206 (1966).Google Scholar
  47. 47.
    M. A. Klochko and M. Sh. Kurbanov, Izv. Sektora Fiz.-Khim. Analiza. IONKh Akad. Nauk SSSR 24, 254 (1954).Google Scholar
  48. 48.
    R. Haase and P. Sauermann, Z. Phys. Chem. 47, 224 (1965).Google Scholar
  49. 49.
    R. Haase and K. Ducker, Z. Phys. Chem. 46, 140 (1965).Google Scholar
  50. 50.
    R. Haase, P. Sauermann, and K. Ducker, Z. Phys. Chem. 46, 129 (1965).Google Scholar
  51. 51.
    R. B. Librovich and V. D. Maiorov, Izv. Akad. Nauk SSSR, Ser. Khim., No. 3, 684 (1977).Google Scholar
  52. 52.
    A. A. Ivanov, et al., Zh. Neorg. Khim. 24(10), 2760 (1979).Google Scholar
  53. 53.
    A. A. Ivanov, et al., Zh. Neorg. Khim. 30(4), 1069 (1985).Google Scholar
  54. 54.
    J. Semmler and D. Irish, J. Solution Chem. 17(9), 805 (1988).CrossRefGoogle Scholar
  55. 55.
    M. A. Klochko and M. Sh. Kurbanov, Izv. Sektora Fiz.-Khim. Analiza IONKh Akad. Nauk SSSR 24, 237 (1954).Google Scholar
  56. 56.
    M. A. Klochko and M. Sh. Kurbanov, Izv. Sektora Fiz.-Khim. Analiza IONKh Akad. Nauk SSSR 24, 264 (1954).Google Scholar
  57. 57.
    N. Greenwood, et al., J. Chem. Soc., No. 12, 3864 (1959).Google Scholar
  58. 58.
    N. Greenwood, J. Chem. Soc., No. 11, 3485 (1959).Google Scholar
  59. 59.
    R. J. Gillsepie, et al., J. Chem. Soc., 4327 (1960).Google Scholar
  60. 60.
    M. I. Usanovich, Investigations in the Theory of Solutions and the Theory of Acids and Bases (Nauka, Alma-Ata, 1970) [in Russian].Google Scholar
  61. 61.
    R. Suhrmann and I. Wiedersich, Z. Anorg. Allg. Chem. 272, 167 (1953).CrossRefGoogle Scholar
  62. 62.
    E. Berecz, Acta Chim. Hung. 87(4), 353 (1975).Google Scholar
  63. 63.
    A. Usobiaga, A. Diego, and J. Madariaga, J. Chem. Eng. Data 45(1), 23 (2000).CrossRefGoogle Scholar
  64. 64.
    E. Berecz and I. Bader, Acta Chim. Hung. 79(1), 81 (1973).Google Scholar
  65. 65.
    T. Torok and E. Berecz, J. Solution Chem. 18(12), 1117 (1989).CrossRefGoogle Scholar
  66. 66.
    E. Berecz, I. Bader, and T. Torok, Acta Chim. Hung. 91, 119 (1976).Google Scholar
  67. 67.
    M. A. Yakimov and I. F. Nosova, and Ty Ki, Zh. Neorg. Khim. 12(5), 1360 (1967).Google Scholar
  68. 68.
    A. N. Storosud, V. V. Volkov, Yu. M. Kargin, and F. F. Faizullin, Elektrokhimiys, Dep. no. 3591-76 (1976).Google Scholar
  69. 69.
    V. E. Razuvaev and I. N. Maksimova, Zh. Prikl. Khim. 50(9), 2139 (1977).Google Scholar
  70. 70.
    N. I. Gusev and P. N. Palei, Zh. Fiz. Khim. 45(9), 2243 (1971).Google Scholar
  71. 71.
    A. A. Ivanov, Zh. Neorg. Khim. 51(9), 1610 (2006) [Russ. J. Inorg. Chem. 51 (9), (2006)].Google Scholar
  72. 72.
    I. N. Barbotina, Candidate’s Dissertation in Chemistry (RKhTU, Moscow, 2003).Google Scholar
  73. 73.
    I. D. Muzyka, Zh. Neorg. Khim. 1(4), 713 (1956).Google Scholar
  74. 74.
    P. Lundquist and R. Lewis, J. Chem. Eng. Data, Ser. 2, No. 1, 69 (1957).Google Scholar
  75. 75.
    A. A. Ivanov, Zh. Neorg. Khim. 31(6), 1554 (1986).Google Scholar
  76. 76.
    L. A. Zaitseva, A. A. Ivanov, and I. N. Lepeshkov, Zh. Neorg. Khim. 33(8), 2127 (1988).Google Scholar
  77. 77.
    A. A. Ivanov, L. A. Zaitseva, A. N. Selin, et al., Zh. Neorg. Khim. 34, 1040 (1989).Google Scholar
  78. 78.
    F. Lenfesty and E. Broscher, J. Chem. Eng. Data 5, 152 (1960).CrossRefGoogle Scholar
  79. 79.
    A. A. Ivanov, Zh. Neorg. Khim. 35(6), 1603 (1990).Google Scholar
  80. 80.
    A. A. Ivanov, V. M. Valyashko, and I. N. Lepeshkov, Zh. Neorg. Khim. 25(10), 2793 (1980).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • A. A. Ivanov
    • 1
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations