Russian Journal of Inorganic Chemistry

, Volume 52, Issue 11, pp 1648–1656 | Cite as

Hydrothermal/microwave and hydrothermal/ultrasonic synthesis of nanocrystalline titania, zirconia, and hafnia

  • P. E. Meskin
  • A. I. Gavrilov
  • V. D. Maksimov
  • V. K. Ivanov
  • B. P. Churagulov
Synthesis and Properties of Inorganic Compounds


We compare the physical-chemical properties (X-ray diffraction (XRD), powder X-ray diffraction, TGA, TEM, and BET) of titania, zirconia, and hafnia nanopowders (d = 10–15 nm) synthesized from amorphous titanyl hydroxide TiO2 · nH2O, zirconyl hydroxide ZrO(OH)2 · nH2O, and hafnyl hydroxide HfO(OH)2 · nH2O using hydrothermal (HT), hydrothermal/microwave (HT-MW), and hydrothermal/ultrasonic (HT-US) methods at 150, 180, and 250°C with treatment lasting 0.5–24 h. Titania, zirconia, and hafnia crystallization from amorphous hydroxides is substantially enhanced, and the percentage of the thermally stable zirconia phase (m-ZrO2) in the HT-MW and HT-US processes increases compared to conventional HT synthesis. The observed similar effects have completely different causes. A common factor in both cases is likely the uniformity of heating of treated suspensions. Local overheating in the reaction mixture, which appears during both ultrasonication and microwave treatment, can also play a role in accelerating the hydrothermal processes.


Zirconia Hafnia Local Overheating Zirconyl Nitrate Synthesis Duration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Byrappa and M. Yoshimura, Handbook of Hydrothermal Technology (William Andrew Publishing, New York, 2001).Google Scholar
  2. 2.
    Yu. V. Kolen’ko, A. A. Burukhin, B. R. Churagulov, et al., Zh. Neorg. Khim. 47(11), 1755 (2002) [Russ. J. Inorg. Chem. 47 (11), 1609 (2002)].Google Scholar
  3. 3.
    H.-M. Cheng, L.-J. Wu, J.-M. Ma, et al., J. Eur. Ceram. Soc. 19, 1675 (1999).CrossRefGoogle Scholar
  4. 4.
    A. A. Burukhin, B. R. Churagulov, N. N. Oleinikov, and P. E. Meskin, Zh. Neorg. Khim. 46(5), 735 (2001) [Russ. J. Inorg. Chem. 46 (5), 646 (2001)].Google Scholar
  5. 5.
    S. Komarneni, Q. Li, and R. Roy, Mater. Res. Bull. 27(12), 1393 (1992).CrossRefGoogle Scholar
  6. 6.
    S. Komarneni, Q. Li, K. M. Steffansson, and R. Roy, J. Mater. Res. 8(12), 3176 (1993).CrossRefGoogle Scholar
  7. 7.
    F. Liu, I. R. Abothu, and S. Komarneni, Mater. Lett. 38, 344 (1999).CrossRefGoogle Scholar
  8. 8.
    S. Komarneni, M. C. D’Arrigo, C. Leonelli, et al., J. Am. Ceram. Soc. 81(11), 3041 (1998).CrossRefGoogle Scholar
  9. 9.
    S. Komarneni, V. C. Menon, Q. H. Li, et al., J. Am. Ceram. Soc. 79, 1409 (1996).CrossRefGoogle Scholar
  10. 10.
    N. Kumada, N. Kimura, and S. Komarneni, Mater. Res. Bull. 9, 1411 (1998).CrossRefGoogle Scholar
  11. 11.
    P. E. Meskin, A. E. Baranchikov, V. K. Ivanov, et al., Dokl. Akad. Nauk, Ser. Khim. 389(2), 207 (2003).Google Scholar
  12. 12.
    P. E. Meskin, A. E. Baranchikov, V. K. Ivanov, et al., Neorg. Mater. 40(10), 1208 (2004).CrossRefGoogle Scholar
  13. 13.
    Yu. V. Kolen’ko, P. E. Meskin, V. A. Mukhanov, et al., Zh. Neorg. Khim. 50(12), 1782 (2005) [Russ. J. Inorg. Chem. 50 (12), 1817 (2005)].Google Scholar
  14. 14.
    M. P. Vukalovich and S. L. Rivkin, Thermophysical Properties of Water and Steam (Energiya, Moscow, 1971) [in Russian].Google Scholar
  15. 15.
    S. S. Gorelik, Yu. A. Skakov, and L. N. Rastorguev, X-ray Diffraction and Neutron Diffraction Analyses (MISIS, Moscow, 1994) [in Russian].Google Scholar
  16. 16.
    H. Toraya, M. Yoshimura, and S. Somiya, J. Am. Ceram. Soc. 67(6), 119 (1984).CrossRefGoogle Scholar
  17. 17.
    F. Yu. Sharikov, P. E. Meskin, V. K. Ivanov, et al., Dokl. Akad. Nauk, Ser. Khim. 403(5), 181 (2005).Google Scholar
  18. 18.
    F. Yu. Sharikov, O. V. Al’myasheva, and V. V. Gusarov, Zh. Neorg. Khim. 51(10), 1538 (2006) [Russ. J. Inorg. Chem. 51 (10), 1538 (2006)].Google Scholar
  19. 19.
    F. Yu. Sharikov, V. K. Ivanov, Yu. V. Sharikov, and Yu. D. Tret’yakov, Zh. Neorg. Khim. 51(12), 1952 (2006) [Russ. J. Inorg. Chem. 51 (12), 1841 (2006)].Google Scholar
  20. 20.
    K. Suslick and G. Price, Ann. Rev. Matls. Sci. 29, 295 (1999).CrossRefGoogle Scholar
  21. 21.
    A. E. Baranchikov, V. K. Ivanov, and Yu. D. Tret’yakov, Usp. Khim. 76(2), 147 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  • P. E. Meskin
    • 1
  • A. I. Gavrilov
    • 2
  • V. D. Maksimov
    • 2
  • V. K. Ivanov
    • 1
    • 2
  • B. P. Churagulov
    • 2
  1. 1.Kurnakov Institute of general and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityVorob’evy gory, MoscowRussia

Personalised recommendations