Advertisement

Russian Journal of Inorganic Chemistry

, Volume 51, Issue 12, pp 1937–1944 | Cite as

Interaction of neptunyl with goethite (α-FeOOH), maghemite (γ-Fe2O3), and hematite (α-Fe2O3) in water as probed by X-ray photoelectron spectroscopy

  • A. Yu. Teterin
  • K. I. Maslakov
  • Yu. A. Teterin
  • S. N. Kalmykov
  • K. E. Ivanov
  • L. Vukcevic
  • A. B. Khasanova
  • N. S. Shcherbina
Physical Methods of Investigation

Abstract

The sorption behavior is studied and the physicochemical neptunium species existing on the surface of goethite (α-FeOOH), maghemite (γ-Fe2O3), and hematite (α-Fe2O3) are determined. Solvent extraction and X-ray photoelectron spectroscopy (XPS) are used to determine the neptunium surface species. The ion and elemental composition of the surface of the minerals and surface neptunyl NpO 2 + complexes is determined using these data. Compounds containing neptunium(IV) or neptunium(VI) ions do not appear; rather, neptunyl (Np(V)O 2 + group is complexed with surface hydroxide groups of α-FeOOH, γ-Fe2O3, and α-Fe2O3. Presumably, the oxygen atoms of iron oxides and water and/or carbonate (CO 3 2- ) or nitrate (NO 3 - ) group lie in the equatorial plane of the neptunyl (NpO 2 + ) group.

Keywords

Hematite Goethite Maghemite Neptunium Electron Binding Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Pompe, M. Bubner, M. A. Denecke, et al., Radiochim. Acta 74, 135 (1996).Google Scholar
  2. 2.
    G. R. Choppin and P. J. Wong, Aquatic Geochem. 4, 7 (1998).CrossRefGoogle Scholar
  3. 3.
    A. L. Sanchez, J. W. Murray and Th. H. Sibley, Geochim. Cosmochim. Acta 49, 2297 (1985).CrossRefGoogle Scholar
  4. 4.
    M. Kohler, B. D. Honeyman, and J. O. Leckie, Radiochim. Acta 85, 33 (1999).Google Scholar
  5. 5.
    C. D. Hsi and D. Langmuir, Geochim. Cosmochim. Acta 49, 1931 (1985).CrossRefGoogle Scholar
  6. 6.
    H. Abdel-Samad and P. R. Watson, Appl. Surf. Sci. 108, 371 (1997).CrossRefGoogle Scholar
  7. 7.
    Yu. A. Teterin, A. Yu. Teterin, A. P. Dement’ev, et al., Zh. Strukt. Khim. 41(4), 147 (2000).Google Scholar
  8. 8.
    R. J. Atkinson, A. M. Posner, and J. P. Quirk, J. Phys. Chem. 71(3), 550 (1967).CrossRefGoogle Scholar
  9. 9.
    G. A. Parks and P. L. DeBruyn, J. Phys. Chem. 66(2), 967 (1962).Google Scholar
  10. 10.
    G. R. Choppin and A. Kh. Bond, Zh. Anal. Khim. 51(12), 1240 (1996).Google Scholar
  11. 11.
    Yu. A. Teterin, A. S. Baev, L. G. Mashirov, and D. N. Suglobov, Dokl. Akad. Nauk SSSR 276(1), 154 (1984).Google Scholar
  12. 12.
    Practical Surface Analysis by Auger and Z-ray Photoelectron Spectroscopy, Ed. by D. Briggs and M. P. Seah (Academic Press, New York, 1979; Mir, Moscow, 1987).Google Scholar
  13. 13.
    H. Scofield, J. Electron Spectrosc. Relat. Phenom. 8, 129 (1976).CrossRefGoogle Scholar
  14. 14.
    Yu. A. Teterin and S. G. Gagarin, Usp. Khim. 65(10), 895 (1996).Google Scholar
  15. 15.
    Yu. A. Teterin and A. Yu. Teterin, Usp. Khim. 71(5), 403 (2002).Google Scholar
  16. 16.
    Yu. A. Teterin, S. N. Kalmykov, A. P. Novikov, et al., Proceedings of the Fourth Russian Conference on Radiochemistry “Radiochemistry-2003,” Ozersk, Russia, 2003 (Ozersk, Russia, 2003), p. 274.Google Scholar
  17. 17.
    V. I. Nefedov, X-ray Photoelectron Spectroscopy of Chemical Compounds (Khimiya, Moscow, 1984) [in Russian].Google Scholar
  18. 18.
    M. Scrocco, Phys. Rev. 23(9), 4381 (1981).CrossRefGoogle Scholar
  19. 19.
    J. C. Fuggle, J. Electron Spectrosc. Relat. Phenom. 21, 275 (1980).CrossRefGoogle Scholar
  20. 20.
    V. G. Yarzhemsky, Yu. A. Teterin, and M. I. Sosulnikov, J. Electron Spectrosc. Relat. Phenom. 59, 211 (1992).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • A. Yu. Teterin
    • 1
  • K. I. Maslakov
    • 2
  • Yu. A. Teterin
    • 2
  • S. N. Kalmykov
    • 3
  • K. E. Ivanov
    • 2
  • L. Vukcevic
    • 4
  • A. B. Khasanova
    • 3
  • N. S. Shcherbina
    • 3
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Russian Research Center Kurchatov InstituteMoscowRussia
  3. 3.Moscow State UniversityVorob’evy gory, MoscowRussia
  4. 4.University of MontenegroSerbia and Montenegro

Personalised recommendations