Protection of Metals

, Volume 44, Issue 6, pp 535–541 | Cite as

Studying intermolecular processes in thin surface layers with microcantilever transducers. Formation of protein fibrils on a solid support

  • G. A. Kiselev
  • P. V. Kudrinskii
  • I. V. Yaminskii
  • O. I. Vinogradova
Modern Problems of the Physical Chemistry of Surfaces, Materials Science and Materials Protection


The possibility of studying the processes of intermolecular interaction in thin surface layers by means of microcantilever transducer (MCT) are considered. The use of MCT makes it possible to observe the catalytic growth of amyloid fibrils from chemically immobilized lisozyme molecules on the gold or silicon supports at enhanced acidity (pH 3.0) and room temperature, whereas aggregation in the volume occurs under the same conditions at a higher temperature of 57°C. Forces that arise in the monolayer protein films during their aggregation are analyzed. A correlation is revealed between the development of lateral strains and the growth rate of protein fibrils in the monolayer. It is shown that for a protein covalently immobilized on the silicon (mica) surface, the aggregation rate is 4.6 (as revealed by the analysis of kinetic data on the caltilever bending) and 5 times (according to estimates of the number of fibrils in an AFM image) slower than on the gold surface. A model for calculating the pair interactions between protein molecules in a monolayer during their aggregation is proposed. Using this model and based on the experimental data, the pair interaction forces of lysozyme molecules on the gold and silicon surfaces are calculated. The calculated forces coincide in the order of magnitude with the data of force spectroscopy on the artificial expansion of an aggregate of lysozyme molecules T4 [23]. It is confirmed experimentally that chemical immobilization of lysozyme on the mica surface leads to deformation (flattening) of protein molecules as compared with their native conformation.

PACS numbers

07.79.Lh 87.64.Dz 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yaminsky, I., Gorelkin, P., and Kiselev, G., Japan. J. Appl. Phys., 2006, vol. 45, no. 3B, p. 2316.CrossRefGoogle Scholar
  2. 2.
    Berger, R., Delamarchel, E., Lang, H.P., et al., J. Appl. Phys., 1998, vol. 66, no. 55.Google Scholar
  3. 3.
    Ji, H.-F., Finot, E., Dabestani, R., et al., Chem. Commun., 2000, p. 457.Google Scholar
  4. 4.
    Ji, H.-F., Thundat, T., Dabestani, R., et al., Anal. Chem., 2001, vol. 73, no. 7, p. 1572.CrossRefGoogle Scholar
  5. 5.
    Grogan, C., Raiteri, R., O’Connor, G.M., et al., Biosensors Bioelectronics, 2002, vol. 17, p. 201.CrossRefGoogle Scholar
  6. 6.
    Yan, X., Xu, X.K., and Ji, H.-F., Anal. Chem., 2005, vol. 77, no. 19, p. 6197.CrossRefGoogle Scholar
  7. 7.
    Pei, J., Tian, F., and Thundat, T., Anal. Chem., 2004, vol. 76, no. 2, p. 292.CrossRefGoogle Scholar
  8. 8.
    Liu, F., Zhang, Y., and Ou-Yang, Z.-C., Biosensors Bioelectronics, 2003, vol. 18, p. 655.CrossRefGoogle Scholar
  9. 9.
    Savran, C.A., Knudsen, S.M., Ellington, A.D., and Manalis, S.R., Anal. Chem., vol. 76, no. 11, p. 3194.Google Scholar
  10. 10.
    Ukraintsev, E.V., Kiselev, G.A., Kudrinskii, A.A., et al., Vysokomol. Soedin., 2007, vol. 49, no. 1, p. 125.Google Scholar
  11. 11.
    Toda, M., Itakura, A.N., Beuscher, K., et al., J. Surf. Sci. Nanotech., 2006, vol. 4, p. 96.CrossRefGoogle Scholar
  12. 12.
    Lavrik, N.V., Sepaniak, M.J., and Datskos, P.G., Rev. Sci. Ins., 2004, vol. 75, no. 7., p. 2229.CrossRefGoogle Scholar
  13. 13.
    Braun, T., Ghatkesar Krishna, M., Backmann, N., et al., Nanomechanical Biosensors for Membrane Proteins, International Conference of Nanoscience and Technology, Basel, 2006.Google Scholar
  14. 14.
    Inge-Vechtomov, S.G., Borkhsenius, A.S., and Zadorskii, S.P., Vestn. VOGiS, 2004, vol. 8, no. 2, p. 60.Google Scholar
  15. 15.
    Ohnishia, S. and Takanob, K., Cell. Mol. Life Sci., 2004, vol. 61, p. 511.CrossRefGoogle Scholar
  16. 16.
    Rafaee, M. Tezuka, T., Akasaka, K., and Williamson, M., J. Mol. Biol., 2003, vol. 327, no. 4, p. 857.CrossRefGoogle Scholar
  17. 17.
    Serpell, L., Sundea, M., and Blakea, C.C.F., Cell. Mol. Life Sci., 1997, vol. 53, p. 871.CrossRefGoogle Scholar
  18. 18.
    Egorov, A.M., Osipov, A.P., Dzantiev, B.B., and Gavrilova, E.M., Teoriya i praktika immunofermentnogo analiza (Theory and Practice of Immune-Enzyme Analysis), Moscow: Vysshaya Shkola, 1991.Google Scholar
  19. 19.
    Baller, M.K., Lang, H.P., Fritz, J., et al., Ultramicroscopy, 2000, vol. 82, p. 1.CrossRefGoogle Scholar
  20. 20.
    McAllister, C., Karymov, M., Kawano, Y., et al., J. Mol. Biol., 2005, vol. 354, no. 5, p. 1028.CrossRefGoogle Scholar
  21. 21.
    Sun, D. and Mills, J.K., Appl. Acoustics, 2002, vol. 63, no. 44, p. 885.CrossRefGoogle Scholar
  22. 22.
    Yamisky, V., Gvozdev, N.V., Sil’nikova, M.I., and Rashkovich, L.N., Crystallogrphy Reports, 2002, vol. 47, no. 1, p. S149.CrossRefGoogle Scholar
  23. 23.
    Yang, G., Cecconi, C., Baase, W.A., et al., PNAS, 2000, vol. 97, no. 1, p. 139.CrossRefGoogle Scholar
  24. 24.
    Lyubchenko, Y.L. and Shlyakhtenko, L.S., Proc. Natl. Acad. Sci., 1997, vol. 94, p. 496.CrossRefGoogle Scholar
  25. 25.
    Arnaudov, L.N. and Renko de Vries, Biophys. J., 2005, vol. 88, p. 515.CrossRefGoogle Scholar
  26. 26.
    Giacomelli, C.E. and Norde, W., Macromol. Bioscience, 2005, vol. 5, no. 5, p. 401.CrossRefGoogle Scholar
  27. 27.
    Moulin, A.M., O’shea, S.J., Badley, R.A., et al., Langmuir, 1999, vol. 15, p. 8776.CrossRefGoogle Scholar
  28. 28.
    Filonov, A.S. and Yaminskii, I.V., Rukovodstvo pol’zovately paketa programmnogo obespecheniya dlya upravleniya skaniruyushchim zondovym mikroskopom i obrabotki izobrazhenii “FemtoSkan Onlain” User Guidance of Software for Control over Scanning Probe Microscope and Image Processing “FemtoSkan Onlain”), Moscow: Tsentr Perspektivnykh Tekhnologii, 2006.Google Scholar
  29. 29.
    Dubrovin, E.V., Cand. Sc. (Phys.-Mathem.) Dissertation, Moscow: MGU, 2005.Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • G. A. Kiselev
    • 1
  • P. V. Kudrinskii
    • 1
  • I. V. Yaminskii
    • 1
  • O. I. Vinogradova
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations