Problems of Information Transmission

, Volume 54, Issue 4, pp 343–350 | Cite as

On the Complexity of Fibonacci Coding

  • I. S. SergeevEmail author
Coding Theory


We show that converting an n-digit number from a binary to Fibonacci representation and backward can be realized by Boolean circuits of complexity O(M(n) log n), where M(n) is the complexity of integer multiplication. For a more general case of r-Fibonacci representations, the obtained complexity estimates are of the form \({2^O}{(\sqrt {\log n} )_n}\).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lekkerkerker, C.G., Representation of Natural Numbers as a Sum of Fibonacci Numbers, Simon Stevin, 1952, vol. 29, pp. 190–195.MathSciNetzbMATHGoogle Scholar
  2. 2.
    Kautz, W.H., Fibonacci Codes for Synchronization Control, IEEE Trans. Inform. Theory, 1965, vol. 11, no. 2, pp. 284–292.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Daykin, D.E., Representation of Natural Numbers as Sums of Generalized Fibonacci Numbers, J. London Math. Soc., 1960, vol. 35, no. 2, pp. 143–160.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bergman, G., A Number System with an Irrational Base, Math. Magazine, 1957, vol. 31, no. 2, pp. 98–110.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Apostolico, A. and Fraenkel, A.S., Robust Transmission of Unbounded Strings Using Fibonacci Representations, IEEE Trans. Inform. Theory, 1987, vol. 33, no. 2, pp. 238–245.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Klein, S.T. and Ben-Nissan, M.K., On the Usefulness of Fibonacci Compression Codes, Comput. J., 2010, vol. 53, no. 6, pp. 701–716.CrossRefGoogle Scholar
  7. 7.
    Immink, K.A.S., Codes for Mass Data Storage Systems, Eindhoven, The Netherlands: Shannon Foundation Publ., 2004, 2nd ed.Google Scholar
  8. 8.
    Ahlbach, C., Usatine, J., Frougny, C., and Pippenger, N., Efficient Algorithms for Zeckendorf Arithmetic, Fibonacci Quart., 2013, vol. 51, no. 3, pp. 249–255.MathSciNetzbMATHGoogle Scholar
  9. 9.
    Wegener, I., The Complexity of Boolean Functions, Chicester: Wiley; Stuttgart: Teubner, 1987.zbMATHGoogle Scholar
  10. 10.
    Berstel, J., Fibonacci Words—A Survey, The Book of L, Rozenberg, G. and Salomaa, A., Eds., Berlin; New York: Springer-Verlag, 1986, pp. 13–27.CrossRefzbMATHGoogle Scholar
  11. 11.
    Frougny, C., Pelantová, E., and Svobodová, M., Parallel Addition in Non-standard Numeration Systems, Theor. Comput. Sci., 2011, vol. 412, no. 41, pp. 5714–5727.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fürer, M., Faster Integer Multiplication, SIAM J. Comput., 2009, vol. 39, no. 3, pp. 979–1005.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gashkov, S.B., Zanimatel’naya komp’yuternaya arifmetika. Bystrye algoritmy operatsii s chislami i mnogochlenami (Computer Arithmetic for Entertainment. Fast Algorithms for Operations with Numbers and Polynomials). Moscow: Librokom, 2012.Google Scholar
  14. 14.
    Reif, J. and Tate, S., Optimal Size Integer Division Circuits, SIAM J. Comput., 1990, vol. 19, no. 5, pp. 912–924.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Miles, E.P., Jr., Generalized Fibonacci Numbers and Associated Matrices, Amer. Math. Monthly, 1960, vol. 67, no. 8, pp. 745–752.Google Scholar
  16. 16.
    Spickerman, W.R. and Joyner, R.N., Binet’s Formula for the Recursive Sequence of Order k, Fibonacci Quart., 1984, vol. 22, no. 4, pp. 327–331.MathSciNetzbMATHGoogle Scholar
  17. 17.
    Dresden, G.P.B. and Du, Z., A Simplified Binet Formula for k-Generalized Fibonacci Numbers, J. Integer Seq., 2014, vol. 17, no. 4, Article 14.4.7 (9 pp.)Google Scholar
  18. 18.
    Howard, F.T., Generalizations of a Fibonacci Identity, in Applications of Fibonacci Numbers, vol. 8 (Proc. 8th Int. Research Conf. on Fibonacci Numbers and Their Applications, Rochester, NY, USA, June 22–26, 1998), Dordrecht: Kluwer, 1999, pp. 201–211.Google Scholar
  19. 19.
    Toom, A.L., The Complexity of a Scheme of Functional Elements Simulating the Multiplication of Integers, Dokl. Akad. Nauk SSSR, 1963, vol. 150, no. 3, pp. 496–498 [Soviet Math. Doklady (Engl. Transl.), 1963, vol. 3, pp. 714–716].MathSciNetzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Federal State Unitary Enterprise “Kvant Scientific Research Institute,”MoscowRussia

Personalised recommendations