Advertisement

Problems of Information Transmission

, Volume 54, Issue 4, pp 329–342 | Cite as

Refinements of Levenshtein Bounds in q-ary Hamming Spaces

  • P. BoyvalenkovEmail author
  • D. Danev
  • M. Stoyanova
Coding Theory
  • 6 Downloads

Abstract

We develop refinements of the Levenshtein bound in q-ary Hamming spaces by taking into account the discrete nature of the distances versus the continuous behavior of certain parameters used by Levenshtein. We investigate the first relevant cases and present new bounds. In particular, we derive generalizations and q-ary analogs of the MacEliece bound. Furthermore, we provide evidence that our approach is as good as the complete linear programming and discuss how faster are our calculations. Finally, we present a table with parameters of codes which, if exist, would attain our bounds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Delsarte, P. and Levenstein, V.I., Association Schemes and Coding Theory, IEEE Trans. Inform. Theory, 1998, vol. 14, no. 6, pp. 2477–2504.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Levenshtein, V.I., Designs as Maximum Codes in Polynomial Metric Spaces, Acta Appl. Math., 1992, vol. 29, no. 1–2, pp. 1–82.Google Scholar
  3. 3.
    Levenshtein, V.I., Universal Bounds for Codes and Designs, Handbook of Coding Theory, Pless, V.S. and Huffman, W.C., Eds., Amsterdam: Elsevier, 1998, vol. I, ch. 6, pp. 499–648.zbMATHGoogle Scholar
  4. 4.
    Delsarte, P., An Algebraic Approach to the Association Schemes of Coding Theory, Philips Res. Rep. Suppl., 1973, no. 10. Translated under the title Algebraicheskii podkhod k skhemam otnoshenii teorii kodirovaniya, Moscow: Mir, 1976.zbMATHGoogle Scholar
  5. 5.
    Levenshtein, V.I., Krawtchouk Polynomials and Universal Bounds for Codes and Designs in Hamming Spaces, IEEE Trans. Inform. Theory, 1995, vol. 41, no. 5, pp. 1303–1321.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    MacWilliams, F.J. and Sloane, N.J.A., The Theory of Error-Correcting Codes, Amsterdam: North- Holland, 1977. Translated under the title Teoriya kodov, ispravlyayushchikh oshibki, Moscow: Svyaz’, 1979.zbMATHGoogle Scholar
  7. 7.
    Tietäväinen, A., Bounds for Binary Codes Just Outside the Plotkin Range, Inform. Control, 1980, vol. 47, no. 2, pp. 85–93.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Krasikov, I. and Litsyn, S., Linear Programming Bounds for Codes of Small Sizes, Europ. J. Combin., 1997, vol. 18, no. 6, pp. 647–656.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Sidel’nikov, V.M., On Mutual Correlation of Sequences, Dokl. Akad. Nauk SSSR, 1971, vol. 196, no. 3, pp. 531–534 [Soviet Math. Doklady (Engl. Transl.), 1971, vol. 12, no. 1, pp. 197–201].MathSciNetzbMATHGoogle Scholar
  10. 10.
    Perttula, A., Bounds for Binary and Nonbinary Codes Slightly Outside of the Plotkin Range, PhD Thesis, Tampere Univ. of Technology, Tampere, Finland, 1982.Google Scholar
  11. 11.
    Szegő, G., Orthogonal Polynomials, New York: Amer. Math. Soc., 1939.zbMATHGoogle Scholar
  12. 12.
    Barg, A. and Nogin, D.Yu., Spectral Approach to Linear Programming Bounds on Codes, Probl. Peredachi Inf., 2006, vol. 42, no. 2, pp. 12–25 [Probl. Inf. Trans. (Engl. Transl.), 2006, vol. 42, no. 2, pp. 77–89].MathSciNetzbMATHGoogle Scholar
  13. 13.
    Boyvalenkov, P. and Danev, D., On Linear Programming Bounds for Codes in Polynomial Metric Spaces, Probl. Peredachi Inf., 1998, vol. 34, no. 2, pp. 16–31 [Probl. Inf. Trans. (Engl. Transl.), 1998, vol. 34, no. 2, pp. 108–120].MathSciNetzbMATHGoogle Scholar
  14. 14.
    Krasikov, I. and Litsyn, S., On Integral Zeros of Krawtchouk Polynomials, J. Combin. Theory Ser. A, 1996, vol. 74, no. 1, pp. 71–99.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Stroeker, R.J. and de Weger, B.M.M., On Integral Zeroes of Binary Krawtchouk Polynomial, Nieuw Arch. Wisk. (4), 1999, vol. 17, no. 2, pp. 175–186.MathSciNetzbMATHGoogle Scholar
  16. 16.
    Bounds for Parameters of Codes, Sage Project (Software for Algebra and Geometry Experimentation), https://doi.org/doc.sagemath.org/html/en/reference/coding/sage/coding/code_bounds.html.
  17. 17.
    Barg, A. and Jaffe, D., Numerical Results on the Asymptotic Rate of Binary Codes, Codes and Association Schemes, Barg, A. and Litsyn, S., Eds., DIMACS Ser., vol. 56, Providence, R.I.: Amer. Math. Soc., 2001, pp. 25–32.CrossRefzbMATHGoogle Scholar
  18. 18.
    Samorodnitsky, A., On the Optimum of Delsarte’s Linear Program, J. Combin. Theory Ser. A, 2001, vol. 96, no. 2, pp. 261–287.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gijswijt, D., Schrijver, A., and Tanaka, H., New Upper Bounds for Nonbinary Codes Based on the Terwilliger Algebra and Semidefinite Programming, J. Combin. Theory Ser. A, 2006, vol. 113, no. 8, pp. 1719–1731.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Schrijver, A., New Code Upper Bounds from the Terwilliger Algebra and Semidefinite Programming, IEEE Trans. Inform. Theory, 2005, vol. 51, no. 8, pp. 2859–2866.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Litjens, B., Polak, S., and Schrijver, A., Semidefinite Bounds for Nonbinary Codes Based on Quadruples, Des. Codes Cryptography, 2017, vol. 84, no. 1–2, pp. 87–100.Google Scholar
  22. 22.
    Brouwer, A.E., Tables of Codes [electronic]. Available online at https://doi.org/www.win.tue.nl/~aeb/.
  23. 23.
    Boyd, S. and Vandenberghe, L., Convex Optimization, Cambridge: Cambridge Univ. Press, 2004.CrossRefzbMATHGoogle Scholar
  24. 24.
    Kerdock, A.M., A Class of Low-Rate Nonlinear Binary Codes, Inform. Control, 1972, vol. 20, no. 2, pp. 182–187.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Agrell, E., Vardy, A., and Zeger, K., A Table of Upper Bounds for Binary Codes, IEEE Trans. Inform. Theory, 2001, vol. 47, no. 7, pp. 3004–3006.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Best, M.R., Brouwer, A.E., MacWilliams, F.J., Odlyzko, A.M., and Sloane, N.J.A., Bounds for Binary Codes of Length Less than 25, IEEE Trans. Inform. Theory., 1978, vol. 24, no. 1, pp. 81–93.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Hedayat, A., Sloane, N.J.A., and Stufken, J., Orthogonal Arrays: Theory and Applications, New York: Springer, 1999.CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Mathematics and InformaticsBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Faculty of EngineeringSouth-Western UniversityBlagoevgradBulgaria
  3. 3.Department of Electrical Engineering and Department of MathematicsLinköping UniversityLinköpingSweden
  4. 4.Faculty of Mathematics and InformaticsSofia UniversitySofiaBulgaria

Personalised recommendations