Advertisement

Problems of Information Transmission

, Volume 54, Issue 3, pp 253–257 | Cite as

New Good’s Type Kronecker Power Expansions

  • M. S. Bespalov
Methods of Signal Processing

Abstract

We propose a new version of the proof of Good’s theorem stating that the Kronecker power of an arbitrary square matrix can be represented as a matrix power of a sparse matrix Z. We propose new variants of sparse matrices Z. We observe that for another version of the tensor power of a matrix, the b-power, there exists an analog of another Good’s expansion but no analog of this theorem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Good, I.J., The Interaction Algorithm and Practical Fourier Analysis, J. Royal Statist. Soc., Ser. B, 1958, vol. 20, no. 2, pp. 361–372.MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bespalov, M.S., Construction and Properties of Discrete Walsh Transform Matrices, Walsh and Dyadic Analysis (Proc. Workshop Dedicated to the Memory of J.E. Gibbs, Niš, Serbia, Oct. 18–19, 2007), Stanković, R.S., Ed., Niš, Serbia: Faculty of Electronics, Univ. of Niš, 2008, pp. 195–208.Google Scholar
  3. 3.
    Bespalov, M.S., On the Properties of a New Tensor Product of Matrices, Zh. Vychisl. Mat. Mat. Fiz., 2014, vol. 54, no. 4, pp. 547–561 [Comput. Math. Math. Phys. (Engl. Transl.), 2014, vol. 54, no. 4, pp. 561–574].MathSciNetzbMATHGoogle Scholar
  4. 4.
    Johnson, J.R., Johnson, R.W., Rodriguez, D., and Tolimieri, R., A Methodology for Designing, Modifying, and Implementing Fourier Transform Algorithms on Various Architectures, Circuits Systems Signal Process., 1990, vol. 9, no. 4, pp. 449–500.CrossRefzbMATHGoogle Scholar
  5. 5.
    Diaconis, P., Graham, R.L., and Kantor, W.M., The Mathematics of Perfect Shuflles, Adv. in Appl. Math., 1983, vol. 4, no. 2, pp. 175–196.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Izbrannye glavy diskretnogo garmonicheskogo analiza i geometricheskogo modelirovaniya (Selected Chapters in Discrete Harmonic Analysis and Computer Aided Geometric Design), Malozemov, V.N., Ed., Part 1, St. Petersburg: VVM, 2014.Google Scholar
  7. 7.
    Bespalov, M.S., Eigenspaces of the Discrete Walsh Transform, Probl. Peredachi Inf., 2010, vol. 46, no. 3, pp. 60–79 [Probl. Inf. Transm. (Engl. Transl.), 2010, vol. 46, no. 3, pp. 253–271].MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bespalov, M.S. and Sklyarenko, V.A., Diskretnye Funktsii Uolsha i ikh prilozheniya (Discrete Walsh Functions and Their Applications), Vladimir: Vladimir State Univ., 2014.Google Scholar
  9. 9.
    Bespalov, M.S., The Discrete Chrestenson Transform, Probl. Peredachi Inf., 2010, vol. 46, no. 4, pp. 91–115 [Probl. Inf. Transm. (Engl. Transl.), 2010, vol. 46, no. 4, pp. 353–375].MathSciNetzbMATHGoogle Scholar
  10. 10.
    Trakhtman, A.M. and Trakhtman, V.A., Osnovy teorii diskretnykh signalov na konechnykh intervalakh (Elements of Theory of Discrete Signals on Finite Intervals), Moscow: Sov. Radio, 1975.Google Scholar
  11. 11.
    Bespalov, M.S., New Enumeration ofWalshMatrices, Probl. Peredachi Inf., 2009, vol. 45, no. 4, pp. 43–53 [Probl. Inf. Transm. (Engl. Transl.), 2009, vol. 45, no. 4, pp. 333–342].MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Department of Functional Analysis and Its ApplicationsStoletov Brothers Vladimir State UniversityVladimirRussia

Personalised recommendations