Problems of Information Transmission

, Volume 52, Issue 3, pp 201–213 | Cite as

Degradable channels, less noisy channels, and quantum statistical morphisms: An equivalence relation

  • F. Buscemi
Information Theory


Two partial orderings among communication channels, namely “being degradable into” and “being less noisy than,” are reconsidered in the light of recent results about statistical comparisons of quantum channels. Though our analysis covers at once both classical and quantum channels, we also provide a separate treatment of classical noisy channels and show how in this case an alternative self-contained proof can be constructed, with its own particular merits with respect to the general result.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wilde, M.M., Quantum Information Theory, Cambridge, UK: Cambridge Univ. Press, 2013.CrossRefzbMATHGoogle Scholar
  2. 2.
    Cohen, J.E., Kemperman, J.H.B., and Zbăganu, G., Comparisons of Stochastic Matrices, with Applications in Information Theory, Statistics, Economics, and Population Sciences, Boston: Birkhäuser, 1998.zbMATHGoogle Scholar
  3. 3.
    König, R., Renner, R., and Schaffner, C., The Operational Meaning of Min-and Max-Entropy, IEEE Trans. Inform. Theory, 2009, vol. 55, no. 9, pp. 4337–4347.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bergmans, P.P., Random Coding Theorem for Broadcast Channels with Degraded Components, IEEE Trans. Inform. Theory, 1973, vol. 19, no. 2, pp. 197–207.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Körner, J. and Marton, K., Comparison of Two Noisy Channels, Topics in Information Theory (2nd Colloq., Keszthely, Hungary, 1975), Csiszár, I. and Elias, P., Eds., Colloq. Math. Soc. János Bolyai, vol. 16, Amsterdam: North-Holland, 1977, pp. 411–423.Google Scholar
  6. 6.
    El Gamal, A.A., Broadcast Channels with and without Feedback, Proc. 11th Asilomar Conference on Circuits, Systems and Computers, Pacific Grove, CA, Nov. 7–9, 1977, Chan, S.-P., Ed., New York: IEEE, 1978, pp. 180–183.Google Scholar
  7. 7.
    Csiszár, I. and Körner, J., Information Theory: Coding Theorems for Discrete Memoryless Systems. Cambridge: Cambridge Univ. Press, 2011, 2nd ed.CrossRefzbMATHGoogle Scholar
  8. 8.
    Watanabe, S., Private and Quantum Capacities of More Capable and Less Noisy Quantum Channels, Phys. Rev. A, 2012, vol. 85, no. 1, p. 012326.CrossRefGoogle Scholar
  9. 9.
    Blackwell, D., Equivalent Comparisons of Experiments, Ann. Math. Statist., 1953, vol. 24, no. 2, pp. 265–272.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Torgersen, E.N., Comparison of Statistical Experiments, Cambridge: Cambridge Univ. Press, 1991.CrossRefzbMATHGoogle Scholar
  11. 11.
    Liese, F. and Miescke, K.-J., Statistical Decision Theory: Estimation, Testing, and Selection, New York: Springer, 2008.CrossRefzbMATHGoogle Scholar
  12. 12.
    Buscemi, F., Keyl, M., D’Ariano, G.M., Perinotti, P., and Werner, R.F., Clean Positive Operator Valued Measures, J. Math. Phys., 2005, vol. 46, no. 8, p. 82109.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Shmaya, E., Comparison of Information Structures and Completely Positive Maps, J. Phys. A, 2005, vol. 38, no. 44, pp. 9717–9727.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chefles, A., The Quantum Blackwell Theorem and Minimum Error State Discrimination, arXiv:0907. 0866v4 [quant-ph], 2009.Google Scholar
  15. 15.
    Buscemi, F., Comparison of Quantum Statistical Models: Equivalent Conditions for Sufficiency, Comm. Math. Phys., 2012, vol. 310, no. 3, pp. 625–647.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Buscemi, F., Datta, N., and Strelchuk, S., Game-Theoretic Characterization of Antidegradable Channels, J. Math. Phys., 2014, vol. 55, no. 9, p. 092202.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Buscemi F. and Datta, N., Equivalence between Divisibility and Monotonic Decrease of Information in Classical and Quantum Stochastic Processes, Phys. Rev. A, 2016, vol. 93, no. 1, p. 012101.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Matsumoto, K., An Example of a Quantum Statistical Model Which Cannot Be Mapped to a Less Informative One by Any Trace Preserving Positive Map, arXiv:1409.5658 [quant-ph, math.ST], 2014.Google Scholar
  19. 19.
    Heinosaari, T., Jivulescu, M.A., Reeb, D., and Wolf, M.M., Extending Quantum Operations, J. Math. Phys., 2012, vol. 53, no. 10, p. 102208.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Jenčová, A., Comparison of Quantum Binary Experiments, Rep. Math. Phys., 2012, vol. 70, no. 2, pp. 237–249.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Braunstein, S.L., D’Ariano, G.M., Milburn, G.J., and Sacchi, M.F., Universal Teleportation with a Twist, Phys. Rev. Lett., 2000, vol. 84, no. 15, pp. 3486–3489.CrossRefGoogle Scholar
  22. 22.
    Raginsky, M., Shannon Meets Blackwell and Le Cam: Channels, Codes, and Statistical Experiments, in Proc. 2011 IEEE Int. Sympos. on Information Theory (ISIT’2011), St. Petersburg, Russia, July 31–Aug. 5, 2011, pp. 1220–1224.CrossRefGoogle Scholar
  23. 23.
    Buscemi, F., All Entangled Quantum States are Nonlocal, Phys. Rev. Lett., 2012, vol. 108, no. 20, p. 200401.CrossRefGoogle Scholar
  24. 24.
    Buscemi, F., Complete Positivity, Markovianity, and the Quantum Data-Processing Inequality, in the Presence of Initial System-Environment Correlations, Phys. Rev. Lett., 2014, vol. 113, no. 14, p. 140502.CrossRefGoogle Scholar
  25. 25.
    Buscemi, F., Fully Quantum Second-Law-like Statements from the Theory of Statistical Comparisons, arXiv:1505.00535 [quant-ph], 2014.Google Scholar
  26. 26.
    Horn, R.A. and Johnson, C.R., Matrix Analysis, Cambridge: Cambridge Univ. Press, 2013, 2nd ed.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Department of Computer Science and Mathematical InformaticsNagoya UniversityNagoyaJapan

Personalised recommendations